期刊文献+

融合影响力传播的社交网络群推荐方法 被引量:6

Group Recommendation in Social Networks Based on Influence Spread
下载PDF
导出
摘要 在社交网络中,以用户群体作为服务对象来进行个性化推荐服务,能有效提升推荐效率。已有的研究在进行群推荐时大多仅考虑用户群体的整体兴趣,忽视了群体中用户间的相互影响。为此,本文提出了一种基于影响力传播的社交网络群推荐方法,综合考虑用户自身兴趣与其受核心用户影响而产生的兴趣来进行社交网络群推荐服务。以微博“超话”上的数据为例对本文所提方法进行验证,证明了本文所提方法的有效性,从研究结果来看,加入对影响力传播的考量能显著提升群推荐效果。 In social networks, providing personalized recommendation services for group users can effectively improve recommendation efficiency. When conducting group recommendation, most of the existing studies only consider the interests of the user group, but ignore the mutual influence between users in the group. To this end, this paper proposes a social network group recommendation method based on influence spread. Considering the user’s own interests and those generated by the influence of core users, the social network group recommendation service is carried out. To prove the effectiveness of the proposed method, data on Weibo“Super Talk”are taken as an example to verify the method. Experiments indicate that combining influence spread can significantly improve the effect of group recommendation.
作者 叶佳鑫 熊回香 易明 刘明 Ye Jiaxin;Xiong Huixiang;Yi Ming;Liu Ming(School of Information Management,Central China Normal University,Wuhan 430079)
出处 《情报学报》 CSSCI CSCD 北大核心 2022年第4期364-374,共11页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金重点项目“在线健康社区知识共创机理及引导机制研究”(21ATQ006)。
关键词 社交网络 影响力传播 个性化推荐 群推荐 social network influence spread personalized recommendation group recommendation
  • 相关文献

参考文献11

二级参考文献150

  • 1叶鹰.h指数和类h指数的机理分析与实证研究导引[J].大学图书馆学报,2007,25(5):2-5. 被引量:115
  • 2刘颖.利用h指数及衍生h指数评价省级公共图书馆学术影响力[J].图书馆建设,2009(11):77-81. 被引量:14
  • 3张亚英,尤晋元.A role based coordination model in agent systems[J].Journal of Harbin Institute of Technology(New Series),2005,12(5):555-561. 被引量:2
  • 4桑德拉·黑贝尔斯,理查·德威沃尔二世.有效沟通[M].李业昆,译.北京:华夏出版社,2005:9.
  • 5O'Connor M,Cosley D,Konstan J,et al.PolyLens:a recommender system for groups of users.In Procedings of the European conference on computer-supported cooperative work[C].2001:199-218.
  • 6Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framwork for performing collaborative filtering[C]//Procedings of the 1999 conference on research and development information retrieval.1999:230-237.
  • 7Masthoff J.Modeling a Group of Televison viewers[C]// Proceding s of the workshop futrue TV in intelligenct tutoring systems conference,2002:34-42.
  • 8McCarthy J F,Anagnost T D.MusicFX:an arbiter of group prefernces for computer supported collaborative workouts[C]// Procedings of the ACM conference on computer supported cooperative work.1998:363-372.
  • 9Jameson A.More than the sum of its members:Chanllenges for group recommender systems[C]// Procedings of the international working conference on advanced visual interfaces,Gallipoli Italy.2004.
  • 10Ardissono L,Goy A,Petrone G,et al.INTRIGUE:Personalized recommendation of tourist attractions for desktop and band held devices[J].Applied Artificial Intelligence,2003,17(8-9):687-714.

共引文献109

同被引文献132

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部