摘要
The radial ultrasonic rolling electrochemical micromachining(RUR-EMM)combined rolling electrochemical micromachining(R-EMM)and ultrasonic vibration was studied in this paper.The fundamental understanding of the machining process especially the interaction between multiphysics in the interelectrode gap(IEG)was investigated and discussed by the finite element method.The multiphysics coupling model including flow field model,Joule heating model,material dissolution model and vibration model was built.3D multiphysics simulation based on micro dimples process in RUR-EMM and R-EMM was proposed.Simulation results showed that the electrolyte flowed into and out IEG periodically,gas bubbles were easy to squeeze out and the gas void fraction deceased about 16%to 54%,the maximum current density increased by 1.36 times in RUR-EMM than in R-EMM in one vibration period of time.And application of the ultrasonic vibration increased the electrolyte temperature about 1.3–4.4%in IEG.Verification experiments of the micro dimple process denoted better corrosion consistency of array dimples in RUR-EMM,there was no island at the micro dimple bottom which always formed in R-EMM,and an aggregated deviation of less than 8.7%for the micro dimple depth and 4%for the material removal amount between theory and experiment was obtained.
基金
financial support of the projects from the National Natural Science Foundation of China(Nos.51975532 and 51475428)
the Zhejiang Provincial Natural Science Foundation(No.LY19E050007)。