期刊文献+

金刚石滚轮修整时的径向圆跳动状态在线判别

On-line discrimination of radial runout state during diamond roller trimming
下载PDF
导出
摘要 金刚石滚轮修整砂轮时的性能受其径向圆跳动的影响,而其径向圆跳动状态判别的智能化程度较低。为此,对金刚石滚轮修整状态下的径向圆跳动磨削声发射信号,提出一种基于小波分解和SVM的在线检测方法。将磨削声发射信号通过小波变换并分解,提取小波分解系数的有效值、方差及能谱系数3种特征参数。结果表明:将3种特征参数彼此组合输入到SVM中进行状态识别时的准确率都在96.0%以上;3种特征参数同时输入时的准确率最高,达到了98.3%。该检测方法具有实际应用价值。 The performance of diamond roller when dressing grinding wheel was affected by its radial runout,but the intelligent degree of judging its radial runout state was low.Therefore,an on-line detection method based on wavelet de-composition and SVM was proposed for the grinding acoustic emission signal of radial runout under the trimming state of diamond roller.The grinding acoustic emission signal was transformed and decomposed by wavelet transform,and the three characteristic parameters of wavelet decomposition coefficients were extracted,which were effective value,variance value and energy spectrum coefficient.The results show that the accuracies of combining the three feature parameters into SVM for state recognition are more than 96.0%.When the three characteristic parameters are input at the same time,the accuracy is the highest,reaching 98.3%.The detection method has practical application value.
作者 付庭斌 朱振伟 张瑞 赵华东 FU Tingbin;ZHU Zhenwei;ZHANG Rui;ZHAO Huadong(College of Mechanical and Power Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处 《金刚石与磨料磨具工程》 CAS 北大核心 2022年第2期233-239,共7页 Diamond & Abrasives Engineering
基金 郑州市协同创新项目(18XTZX12006)。
关键词 金刚石滚轮 声发射 小波变换 修整状态识别 支持向量机 diamond roller acoustic emission wavelet transform trimming state recognition support vector machine(SVM)
  • 相关文献

参考文献7

二级参考文献41

  • 1徐鸿钧,徐西鹏,林涛,张幼桢.断续磨削时的脉动温度场解析[J].航空学报,1993,14(6). 被引量:3
  • 2徐鸿钧,徐西鹏,林涛,张幼桢.断续磨削时工件表层温度场解析[J].机械工程学报,1994,30(1):30-36. 被引量:19
  • 3苏丽,赵国良,张仁彦.基于改进小波阈值法的平移不变心电信号去噪[J].哈尔滨工程大学学报,2006,27(6):839-843. 被引量:13
  • 4Kurada S, Bradley C. A review of machine vision sensors for tool condition monitoring[J]. Computers & Industry 1997, 34(1): 55-72.
  • 5Mokbel A A, Maksoud T M A. Monitoring of the condition of diamond grinding wheel using acoustic emission technique[J]. Journal of Materials Processing Tectmology, 2000, 101: 292-297.
  • 6Hwang T W, Whitenton E P, et al. Acoustic emission monitoring of high speed grinding of silicon nitride[J]. Ultrasonics, 2000, 38: 614-619.
  • 7Williams R V. Acoustic emission[M]. Bristol: A. Hilger, c1980: 25-27.
  • 8Lezanski P. An intelligent system for grinding wheel condition monitoring[J]. Journal of Materials Processing Technology, 2001, 109: 258-263.
  • 9Li Xiaoli. A brief review: acoustic emission method for tool wear monitoring during turning[J]. International Journal of Machine Tool & Manufacture, 2002, 42: 157-165.
  • 10蔡光起 巩亚东 宋贵亮译.磨削技术理论与应用[M].沈阳:东北大学出版社,2002..

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部