期刊文献+

一维摄动边界层在优化网格的一致收敛多尺度有限元计算

Uniform convergence of multiscale finite element computation on optimal meshes for one-dimensional perturbed boundary layers
下载PDF
导出
摘要 研究含极小摄动参数的一维对流扩散方程,应用多尺度有限元的高效计算格式求其数值解.构造的多尺度基函数能细致模拟边界层,迭代的自适应优化网格能精确逼近过渡点,通过Matlab模块化编程,从而在宏观尺度节省计算消耗,得到了范数度量下的一致收敛精确化模拟. For a one-dimensional convection-diffusion equation with an extremely small perturbed parameter,a multiscale finite element scheme is proposed for its efficient numerical solution.The multiscale basis functions are able to simulate the boundary layers subtly,the adaptively optimal meshes are trend to approximate the transient location precisely,and we apply Matlab programing.As a result,computational costs are saved on the macroscopic scales and the uniformly convergent accuracy is realized for testing norms.
作者 孙美玲 王晓莹 江山 SUN Meiling;WANG Xiaoying;JIANG Shan(Department of Mathematics,Nantong Vocational University,Nantong 226007,China;School of Science,Nantong University,Nantong 226019,China)
出处 《湘潭大学学报(自然科学版)》 CAS 2022年第2期63-71,共9页 Journal of Xiangtan University(Natural Science Edition)
基金 国家自然科学基金面上项目(11771224) 南通市基础科学研究指令性项目(JC2021123) 南通职业大学高等教育教改研究课题(2019-YB-02)。
关键词 奇异摄动边界层 优化网格 多尺度有限元法 一致收敛 singular perturbation boundary layers optimal meshes multiscale finite element method uniform convergence
  • 相关文献

参考文献5

二级参考文献58

  • 1岑仲迪.奇异摄动对流扩散方程组的一致收敛差分法[J].浙江大学学报(理学版),2006,33(3):250-254. 被引量:1
  • 2CHANG K W, HOWES F A. Nonlinear Singular Perturbation Phenomena: Theory and Applications[M]. New York: Springer-Verlag,1984.
  • 3DOOLAN E P, MILLER J J H, SCHILDERS W H A. Uniform Numerical Methods for Problems with Initial and Boundary Layer [M]. Dublin: Boole Press,1980.
  • 4MORTON K W. Numerical Solution of ConvectionDiffusion Problems[M]. Londan: Chapman & Hall,1996.
  • 5ROOS H G, STYNES M, TOBISKA L. Numerical Methods for Singularly Perturbed Differential Equation[M]. Berlin: Springer-Verlag,1996.
  • 6NATESAN S, RAMANUJAM N. An asymptotic-numerical method for singularly perturbed Robin problems-I[J]. Appl Math Comp, 2002, 126 (1):97-107.
  • 7KELLOGG R B, TSAN A. Analysis of some difference approximations for a singular perturbation problem without turning points [J ]. Math Comp, 1978,32(144): 1025-1039.
  • 8ROOS H G, LINβ T. Sufficient conditions for uniform convergence on layer-adapted grids [J]. Computing, 1999,63(1):27-45.
  • 9Th. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, 1999.
  • 10R. Becker and B. Vexler, Optimal control of the convection-diffusion equation using stabilized finite element methods, Numer. Math., 106:3 (2007), 349-367.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部