期刊文献+

隐私保护的群体感知数据交易算法 被引量:3

Privacy-protected crowd-sensed data trading algorithm
下载PDF
导出
摘要 为解决群体感知数据交易模式下参与者数据隐私泄露的问题,提出了一种隐私保护的群体感知数据交易算法。首先,为实现对参与者的隐私保护,设计了基于差分隐私的聚合方案,参与者不再需要上传原始数据,而是按照任务需求对收集的数据进行分析和计算,将任务结果按照平台分配的隐私预算添加噪声后发送给平台;其次,为确保参与者的可信性,构建了参与者的信誉模型;最后,为激励消费者和参与者参与交易,在考虑消费者对结果偏差的容忍约束和参与者的隐私泄露补偿的基础上构建了交易优化模型以优化平台的收益,并给出了基于遗传算法的收益优化算法(POA)来求解该模型。仿真结果表明,POA不仅保护了参与者的隐私,而且在平台的收益方面相比于VENUS和DPDT分别提高了29.27%和20.45%。 To solve the problem that data privacy leakage of participants under the crowd-sensed data trading model,a privacy-protected crowd-sensed data trading algorithm was proposed.Firstly,to achieve the privacy protection of partic-ipants,an aggregation scheme based on differential privacy was designed.Participants were no longer needed to upload raw data,but analyzed and calculated the collected data according to the task requirements,and then sent the analysis re-sults to the platform after adding noise in accordance with the privacy budget allocated by the platform to protect their privacy.Secondly,in order to ensure the credibility of participants,a reputation model of participants was proposed.Fi-nally,in order to encourage consumers and participants to participate in transactions,a data trading optimization model was constructed by considering the consumer’s constraint on the result deviation,the participant’s privacy leakage com-pensation and platform profit,and a POA based on genetic algorithm was proposed to solve the model.The simulation results show that the POA not only protects the privacy of participants,but also increases the profit of the platform by 29.27%and 20.45%compared to VENUS and DPDT,respectively.
作者 张勇 李丹丹 韩璐 黄小红 ZHANG Yong;LI Dandan;HAN Lu;HUANG Xiaohong(School of Computer Science(National Pilot Software Engineering School),Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《通信学报》 EI CSCD 北大核心 2022年第5期1-13,共13页 Journal on Communications
基金 国家重点研发计划基金资助项目(No.2020YFE0200500) 北京邮电大学优秀博士生创新基金资助项目(No.CX2019212)。
关键词 群体感知 数据交易 差分隐私 信誉模型 crowd sensing data trading differential privacy reputation model
  • 相关文献

参考文献6

二级参考文献45

  • 1田小梅,龚静.实数编码遗传算法的评述[J].湖南环境生物职业技术学院学报,2005,11(1):25-31. 被引量:24
  • 2朱筱蓉,张兴华.基于小生境遗传算法的多峰函数全局优化研究[J].南京工业大学学报(自然科学版),2006,28(3):39-43. 被引量:13
  • 3明亮,王宇平.关于一类遗传算法收敛速度的研究[J].计算数学,2007,29(1):15-26. 被引量:5
  • 4张旭风,王纪川,牟莉.并行遗传算法收敛性分析及优化[J].西安工程科技学院学报,2007,21(5):657-660. 被引量:2
  • 5GOLDBERG D E. Genetic algorithm in Search, optimization and machine learning[M]. Reading, Addison-Wesley,1989.
  • 6MICHALEWlCZ Z. Genetic Algorithms+ Data Structure- Evolution Program[M]. 3rd edition. Berlin: Springer Ver lag,1996.
  • 7BACK T,FORGEL D,Michalewicz Zeds. Handbooks of Ev olutionary computation [M]. New York: Oxford university Press, 1997.
  • 8SANKAR K. Pal,Fellew and C. A. Murthy. GA for genera- tion of class boundaries[J]. IEEE Trans on SMC-ParI B: cybernetics,1998,28(6):816- 828.
  • 9POTTS JC,et al. The Development and Evaluation of an Im- proved Genetic Algorithm Based on Migration and Artificial Selection[J]. IEEE Trans on SMC,1994,24(1):73-86.
  • 10Xiao Fang Qi,FRARCESCO P. Theoretical Analysis of Evo lutionary Algorithms with on Infinite Population Size in Con- tinuous Space, Part I and PartII: Basic Properties of Selec tion and Mutation[J]. IEEE Trans on neural network, 1994,5 (1):102-129.

共引文献58

同被引文献39

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部