摘要
为降低多堆燃料电池系统(multi-stack fuel cell system,MFCS)氢耗并延长运行寿命,提出一种计及系统氢耗和耐久性的多堆燃料电池系统优化控制方法,该方法以MFCS氢耗量和耐久性作为多目标,通过海鸥优化算法(seagull optimization algorithm,SOA)与无源控制(passive-based control,PBC)结合,实时优化每个单堆燃料电池系统输出功率,降低MFCS氢耗量,并兼顾约束功率波动率,提高MFCS耐久性,进而延长MFCS使用寿命。最后基于RT-LAB平台,搭建一套由3个不同性能的110kW质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)系统组成的MFCS实验硬件在环(hardware-in-the-loop,HIL)半实物平台,并从系统氢耗量和运行压力2个方面,与平均分配、链式分配、和基于运行性能衰减程度分配3种MFCS控制方法进行对比验证。结果表明,所提方法能够有效减小系统氢耗量,同时降低PEMFC输出功率波动率,进而提升MFCS耐久性,延长MFCS运行寿命。
In order to reduce the hydrogen consumption and prolong the operating life of multi-stack fuel cell system(MFCS),this paper proposed an optimal control method for multi-stack fuel cell system considering the hydrogen consumption and durability of the system,taking the hydrogen consumption and durability of MFCS as the multi-objective,and combining seagull optimization algorithm(SOA)with passivity-based control(PBC).The output power of each single stack fuel cell system was optimized in real time to reduce the hydrogen consumption of MFCS,and the constrained power fluctuation was considered to improve the durability of MFCS,so as to extend the service life of MFCS.Finally,based on RT-LAB,a hardware in the loop(HIL)semi-physical platform for MFCS experiment was built,which consists of three different performance 110KW PEMFC.Three MFCS control methods were compared and verified.The results show that the proposed method can effectively reduce the hydrogen consumption of the system,reduce the output power fluctuation of PEMFC,and thus improve the durability of MFCS and extend the operation life of MFCS.
作者
蔡良东
李奇
刘强
王天宏
杨文
陈维荣
CAI Liangdong;LI Qi;LIU Qiang;WANG Tianhong;YANG Wen;CHEN Weirong(School of Electrical Engineeringm,Southwest Jiaotong University,Chengdu 610031,Sichuan Province,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2022年第10期3670-3679,共10页
Proceedings of the CSEE
基金
国家自然科学基金项目(51977181,52077180)
霍英东教育基金会高等院校青年教师基金项目(171104)。
关键词
多堆燃料电池系统
海鸥优化算法(SOA)
无源控制
耐久性
氢耗
Multi-stack fuel cell system
seagull optimization algorithm(SOA)
passivity-based control
durability
hydrogen consumption