sup×inf Inequalities for the Scalar Curvature Equation in Dimensions 4 and 5
摘要
We consider the following problem on bounded open setΩof R^(n)■We assume that:■Then,we have a sup×inf inequality for the solutions of the previous equation,namely:■.
二级参考文献16
-
1Aubin T. Some nonlinear problems in Riemannian Geometry. Springer-Verlag, 1998.
-
2Bahoura S S. Inegalites de Harnack pour les solutions d'equation du type courbure sclaire prescrite. C R Math Acad Sci Paris, 2005, 341(1): 25-28.
-
3Bahoura S S. Estimations du type supu x infu sur une variete compacte. Bull Sci Math, 2006, 130(7): 624-636.
-
4Bahoura S S. Majorations du type supu × infu ≤ c pour l'equation de la courbure scalaire sur un ouvert de R^n,n ≥3. J Math Pures Appl, 2004, 83(9): 1109-1150.
-
5Brezis H, Li Y Y, Shafrir I. A sup-kinf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J Funct Anal, 1993, 115:344-358.
-
6Brezis H, Merle F. Uniform estimates and blow-up behavior for solutions of -△^u = V(x)e^u in two dimension. Commun in Partial Differential Equations, 1991, 16(8 and 9): 1223-1253
-
7Caffarelli L, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math, 1984, 37:369-402.
-
8Chen C C, Lin C S. Estimates of the conformal scalar curvature equation via the method of moving planes. Comm Pure Appl Math L, 1997, 50(10): 971-1017.
-
9Chen C C, Lin C S. A sharp sup-binf inequality for a nonlinear elliptic equation in R^2. Commun Anal Geom, 1998, 6(1): 1-19.
-
10Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Grundlehern Math Wiss, 224. Second edition. Berlin: Springer-Verlag, 1983.
-
1高菲,杨柳,李晖.开放集识别研究综述[J].南京大学学报(自然科学版),2022,58(1):115-134. 被引量:8
-
2Yun-Zhi Du,Huai-Fan Li,Fang Liu,Ren Zhao,Li-Chun Zhang.Phase transition of non-linear charged Anti-de Sitter black holes[J].Chinese Physics C,2021,45(11):1-10. 被引量:1
-
3Angela Pistoia,Giusi Vaira,无.Nodal Solutions of the Brezis-Nirenberg Problem in Dimension 6[J].Analysis in Theory and Applications,2022,38(1):1-25.
-
4Soumendu ROY,Arindam BHATTACHARYYA.A Kenmotsu Metric as a *-conformal Yamabe Soliton with Torse Forming Potential Vector Field[J].Acta Mathematica Sinica,English Series,2021,37(12):1896-1908. 被引量:1
-
5Yi Ling,Meng-He Wu.Modified regular black holes with time delay and 1-loop quantum correction[J].Chinese Physics C,2022,46(2):185-194.
-
6Levy K. Matindih,Edwin Moyo,Davy K. Manyika,Timothy Sinyangwe.Some Results of Upper and Lower <i>M</i>-Asymmetric Irresolute Multifunctions in Bitopological Spaces[J].Advances in Pure Mathematics,2021,11(6):611-627. 被引量:1
-
7Banghe LI.UNDERSTANDING SCHUBERT’S BOOK(Ⅱ)[J].Acta Mathematica Scientia,2022,42(1):1-48. 被引量:4
-
8Jianfeng ZHOU,Zhong TAN.REGULARITY OF WEAK SOLUTIONS TO A CLASS OF NONLINEAR PROBLEM[J].Acta Mathematica Scientia,2021,41(4):1333-1365.
-
9Lu Chen,Guozhen Lu,Maochun Zhu.A critical Trudinger-Moser inequality involving a degenerate potential and nonlinear Schrodinger equations[J].Science China Mathematics,2021,64(7):1391-1410. 被引量:1
-
10Bing Li,Fang Wang,Ling Xue,Kai Yang,Kun Zhao.On the Cahn-Hilliard-Brinkman Equations in R^(4):Global Well-Posedness[J].Annals of Applied Mathematics,2021,37(4):513-535.