期刊文献+

sup×inf Inequalities for the Scalar Curvature Equation in Dimensions 4 and 5

原文传递
导出
摘要 We consider the following problem on bounded open setΩof R^(n)■We assume that:■Then,we have a sup×inf inequality for the solutions of the previous equation,namely:■.
出处 《Analysis in Theory and Applications》 CSCD 2022年第1期92-109,共18页 分析理论与应用(英文刊)
  • 相关文献

参考文献2

二级参考文献16

  • 1Aubin T. Some nonlinear problems in Riemannian Geometry. Springer-Verlag, 1998.
  • 2Bahoura S S. Inegalites de Harnack pour les solutions d'equation du type courbure sclaire prescrite. C R Math Acad Sci Paris, 2005, 341(1): 25-28.
  • 3Bahoura S S. Estimations du type supu x infu sur une variete compacte. Bull Sci Math, 2006, 130(7): 624-636.
  • 4Bahoura S S. Majorations du type supu × infu ≤ c pour l'equation de la courbure scalaire sur un ouvert de R^n,n ≥3. J Math Pures Appl, 2004, 83(9): 1109-1150.
  • 5Brezis H, Li Y Y, Shafrir I. A sup-kinf inequality for some nonlinear elliptic equations involving exponential nonlinearities. J Funct Anal, 1993, 115:344-358.
  • 6Brezis H, Merle F. Uniform estimates and blow-up behavior for solutions of -△^u = V(x)e^u in two dimension. Commun in Partial Differential Equations, 1991, 16(8 and 9): 1223-1253
  • 7Caffarelli L, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math, 1984, 37:369-402.
  • 8Chen C C, Lin C S. Estimates of the conformal scalar curvature equation via the method of moving planes. Comm Pure Appl Math L, 1997, 50(10): 971-1017.
  • 9Chen C C, Lin C S. A sharp sup-binf inequality for a nonlinear elliptic equation in R^2. Commun Anal Geom, 1998, 6(1): 1-19.
  • 10Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Grundlehern Math Wiss, 224. Second edition. Berlin: Springer-Verlag, 1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部