摘要
研究了一维全空间上可压缩黏性反应气体方程组的柯西问题,对于热传导系数为温度的幂函数情形,证明了大初值强解的整体存在性。特别地,热传导系数为温度的幂函数导致方程发生退化,这使得密度和温度的正的上下界估计更加困难。
This paper considers the Cauchy problem of the one dimensional compressible viscous reactive gas.For the case that the heat conductivity is proportional to a positive power of the temperature,the global existence of strong solutions with large initial data is established.In particular,it’s more difficult to derive the lower and upper bounds of both the density and temperature due to the degenerate heat conductivity.
作者
韩小敏
吕博强
HAN Xiao-min;LV Bo-qiang(School of Mathematics and information Sciences,Nanchang Hangkong University,Nanchang 330063,China)
出处
《南昌航空大学学报(自然科学版)》
CAS
2022年第1期33-40,共8页
Journal of Nanchang Hangkong University(Natural Sciences)
基金
江西省自然科学基金(20202ACBL211002)
江西省教育厅科技项目(GJJ190514)。
关键词
可压缩黏性反应气体
一维全空间
整体强解
退化热传导系数
compressible viscous reactive gas
one dimensional whole space
global strong solution
degenerate heat conductivity