期刊文献+

基于多尺度感知的改进Fast-RCNN交通场景行人识别与检测方法

Improved Fast-RCNN Traffic Scene Pedestrian Recognition and Detection Method Based on Multi-Scale Perception
下载PDF
导出
摘要 目前,卷积神经网络(Convolutional Neural Network,CNN)模型在各种视觉任务中取得了巨大的成功,但行人检测方面的关键尺度问题仍有待进一步研究。为达到在交通场景下准确识别和定位小目标行人的识别与定位,提出了基于多尺度感知的改进Fast-RCNN模型,对Caltech行人数据集中的小目标行人图像进行检测。通过利用训练后的尺度感知权重,将大尺度子网络和小尺度子网络合并到统一的结构中,并利用对象建议的高度为两个子网络指定不同的尺度感知权重,同时将原模型中的VGG-16特征提取网络替换深度残差网络(ResNet-50)以获取更多特征。最后,对比所提改进模型和基础的Fast-RCNN的模型,发现所提模型行人识别准确率为97.49%,比未改进前提高了4.36%;再和传统的机器学习方法对比(基于HOG特征的SVM识别方法和基于ICF特征的AdaBoost识别方法),发现所提模型效果仍为最好。结果表明,该方法对交通场景下小目标行人的识别效果较好,能够为智能车辆图像识别系统和智慧交通提供参考。 At present,Convolutional Neural Network(CNN)model has achieved great success in various visual tasks,but the key scale of pedestrian detection still needs to be further studied.In order to accurately identify and locate small target pedestrians in traffic scenes,an improved fast RCNN model based on multi-scale perception is proposed to detect small target pedestrian images in Caltech pedestrian data set.By using the trained scale perception weight,the large-scale sub network and small-scale sub network are combined into a unified structure,and different scale perception weights are specified for the two sub networks by using the height suggested by the object.At the same time,the vgg-16 feature extraction network in the original model is replaced by the depth residual network(resnet-50)to obtain more features.Finally,comparing the improved model and the basic fast RCNN model,it is found that the pedestrian recognition accuracy of this model is 97.49%,which is 4.36%higher than that before the improvement;Compared with the traditional machine learning methods(SVM recognition method based on hog feature and AdaBoost recognition method based on ICF feature),it is found that the effect of this model is still the best.The results show that this method has a good effect on the recognition of small target pedestrians in traffic scenes,and can provide a reference for intelligent vehicle image recognition system and intelligent transportation.
作者 张鹏飞 蓝维旱 高峰 王迎旭 ZHANG Pengfei;LAN Weihan;GAO Feng;WAMG Yingxu(China Information Consulting&Designing Institute Co.,Ltd.,Nanjing 210019,China;Guangdong Communication Polytechnic,Guangzhou 510630,China)
出处 《通信电源技术》 2022年第1期87-90,112,共5页 Telecom Power Technology
关键词 小目标行人检测 尺度感知 Fast-RCNN 图像识别 卷积神经网络(CNN) target pedestrian detection scale perception Fast-RCNN image recognition Convolutional Neural Network(CNN)
  • 相关文献

参考文献5

二级参考文献119

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Gavrila D M, Giebel J, Munder S. Vision-based pedestrian detection: the protector system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 13-18
  • 4Tons M, Doerfler R, Meinecke M M, Obojski M A. Radar sensors arid sensor platform used for pedestrian protection in the EC-funded project SAVE-U. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 813-818
  • 5Broggi A, Bertozzi M, Fascioli A, Sechi M. Shape-based pedestrian detection. In: Proceedings of IEEE Intelligent Vehicles Symposium. Dearborn, USA. IEEE, 2000. 215-220
  • 6Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems: single-frame classification and system level performance. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 1-6
  • 7Xu Feng-Liang, Liu Xia, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63-71
  • 8Zhao Liang, Thorpe C. Stereo and neural network-based pedestrian detection. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3): 148-154
  • 9Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T.Pedestrian detection using wavelet templates. In: Proceed-ings of IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico. IEEE, 1997. 193-199
  • 10Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4):349-361

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部