期刊文献+

智能微调的混合动力汽车能量管理策略研究 被引量:1

Research on intelligent fine-tuning of hybrid electric vehicle energy management strategy
下载PDF
导出
摘要 为提高混合动力汽车的燃油经济性,利用深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法优化自适应等效能耗最小策略(adaptive equivalent consumption minimization strategy,A-ECMS)。在基于SOC反馈的基础上考虑上一时刻的需求功率、发动机和电机扭矩来调整等效因子,优化发动机与电机的扭矩输出,达到保持SOC和减少油耗的目的。由FTP75工况训练可知,提出的控制策略可以在原有的强化学习的能量管理策略的基础上用更短的时间学习到更好的控制动作,动作优化了6.05%,训练效率提升了60%,百公里等效油耗同基于规则相比减少了7.07%。在测试工况NEDC上的百公里等效油耗同基于规则能量管理策略相比油耗减少了2.27%,燃油经济性有明显改善。 Energy and environmental issues restrict the development of the traditional automobile industry.Hybrid vehicles with the advantages of traditional fuel vehicles and pure electric vehicles have become a research hotspot.The energy management strategy is the core of the hybrid vehicle control system.The quality of the control strategy directly determines the fuel economy and emission performance of the vehicle.This paper is inspired by the Adaptive Equivalent Consumption Minimization Strategy(A-ECMS).Using reinforcement learning algorithm to optimize the control performance of A-ECMS based on SOC feedback,an intelligently fine-tuned hybrid electric vehicle energy management strategy is proposed.The main idea is to adjust the equivalent factor of the output by considering the required power,engine and motor output torque at the previous moment based on the SOC feedback,and optimize the torque output of the engine and the motor to achieve the purpose of maintaining SOC and reducing fuel consumption.It can be seen from the training results on the FTP75 drive cycle that the proposed energy management strategy can learn better control actions in a shorter time on the basis of the original reinforcement learning energy management strategy,the action is optimized by 6.05%,the training efficiency is increased by 60%.The equivalent fuel consumption per 100 kilometers is 7.62 L,which is 7.07%lower than the rule-based energy management strategy,and only 0.01 L more than the dynamic programming energy management strategy.In order to verify the superior performance of the proposed energy management strategy,the trained control strategy is used for comparison and verification on NEDC drive cycle.The equivalent fuel consumption per 100 kilometers under the NEDC drive cycle is 7.74 L,which is 2.27%lower than that of the rule-based energy management strategy,and 0.02 L more than the dynamic programming energy management strategy.The fuel economy is significantly improved.From the simulation results,it can be seen that the proposed intelligent fine-tuning hybrid electric vehicle energy management strategy can not only improve the fuel economy of the vehicle,but also has good applicability.
作者 赖晨光 庞玉涵 胡博 杨小青 张苏男 黄志华 LAI Chenguang;PANG Yuhan;HU Bo;YANG Xiaoqing;ZHANG Sunan;HUANG Zhihua(Key Laboratory of Automotive Components Manufacturing and Testing Technology,Chongqing University of Technology,Chongqing 400054,China;School of Vehicle Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第5期1-12,共12页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金项目(51905061) 中国博士后科学基金项目(2020M671842) 重庆市自然科学基金项目(cstc2019jcyj-msxmX0097) 重庆市教育委员会科学技术研究项目(KJQN201801124) 内燃机燃烧学国家重点实验室开放课题(k2019-02)。
关键词 混合动力汽车 自适应等效能耗最小策略 深度确定性策略梯度算法 等效因子 能量管理策略 hybrid electric vehicle adaptive equivalent energy consumption minimization strategy deep deterministic strategy gradient algorithm equivalent factor energy management strategy
  • 相关文献

参考文献6

二级参考文献46

  • 1邓元望,王耀南,陈洁平.混合动力驱动系统及其在越野车中的应用[J].农业机械学报,2006,37(10):38-41. 被引量:9
  • 2AntoniSzumanowski.混合电动车辆基础[M].北京:北京理工大学出版社,2001.27-37.
  • 3Chan C C.The state of the art of electric and hybridvehicles[J].Proceedings of the IEEE,2002,90(2):247-275.
  • 4Wirasingha S G,Ali E.Classification and review ofcontrol strategies for plug-in hybrid electric vehicles[J].IEEE Transactions on Vehicular Technology,2011,60(1):111-122.
  • 5杨超.国内外混合动力汽车的发展现状和前景[D].郑州:河南农业大学,2011.
  • 6Huang K D,Tzeng S C.Development of a hybrid pneumatic power vehicle[J].Applied Energy,2005,80(1):56.
  • 7Donald K,James F.US department of energy hybridelectric vehicle battery and fuel economy testing[J].Journal of Power Sources,2006,158(2):1173-1177.
  • 8Zhai H B,Christopher F H,Rouphail N M.Develop-ment of a modal emissions model for a hybrid electricvehicle[J].Transportation Research Part D-Transpor andEnvironment,2011,16(6):444-450.
  • 9Mansour C,Clodic D.Dynamic modeling of the elec-tro-mechanical configuration of the Toyota Hybrid Sys-tem series/parallel power train[J].International Journal ofAutomotive Technology,2012,13(1):143-166.
  • 10Ehsan T,Soheil S,Shaahin F,et al.Battery storagesizing in a retrofitted plug-in hybrid electric vehicle[J].IEEE Transactions on Vehicular Technology,2010,59(6):2786-2794.

共引文献318

同被引文献39

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部