摘要
在全水一步法制备聚氨酯软泡过程中加入相变材料硬脂酸丁酯,原位发泡制备具有较高储热性能的蓄热调温聚氨酯发泡棉。通过红外光谱、热分析、扫描电镜等表征和力学性能测试,研究了不同含量的硬脂酸丁酯对发泡棉表面形貌、化学结构、热性能和力学性能的影响。结果显示作为相变材料的硬脂酸丁酯能较好地与聚氨酯基体相容;所制得的发泡棉相变潜热值随硬脂酸丁酯含量的增加而增大,添加10%~30%硬脂酸丁酯的发泡棉储热值可达11.5~35.2 J/g;力学测试结果显示经硬脂酸丁酯填充后的聚氨酯发泡棉永久压缩形变及压陷强度增大,拉伸强度及断裂伸长率减少。但30%添加量的发泡棉泡孔形貌显示已经出现泡体结构断裂现象,这在使用中会导致泡孔坍塌。综合上述结果,硬脂酸丁酯添加量为20%时蓄热调温发泡棉的蓄热和力学性能较佳,可望用于蓄热调温领域。
Butyl stearate was added into the polyurethane by one-step water method to prepare polyurethane foam of high heat storage and temperature regulating performance. The effects of different content of butyl stearate on the surface morphology, chemical structure, thermal properties and mechanical properties of foam cotton were respectively studied by infrared spectroscopy, thermal analysis, SEM and mechanical properties. The results show that the butyl stearate as a phase change material is compatible with polyurethane matrix better. The latent heat value of the foam cotton increases with the increasing of butyl stearate content. The heat storage value of the foams with 10%~30% butyl stearate is 11.5~35.2 J/g. The mechanical test results show that the permanent compression deformation and compression strength of polyurethane foams filled with butyl stearate increase, while the tensile strength and elongation at break decrease. However, the morphology of foam pore with 30% butyl stearate shows that the bubble structure fracture appeared, which would cause the bubble holes collapse in use. The results show that the heat storage and mechanical properties of the foam cotton with 20% of butyl stearate are better, and it is expected to be used in the field of heat storage and temperature regulation.
作者
朱建政
崔靖萍
杜梦宇
徐士翔
张国庆
ZHU Jian-zheng;CUI Jing-ping;DU Meng-yu;XU Shi-xiang;ZHANG Guo-qing(Yantai Environmental Sanitation Management Center,Yantai 264000,China;School of Materials Science and Engineering,Zhejiang Sci-tech University,Hangzhou 310018,China)
出处
《中国皮革》
CAS
2022年第5期82-87,共6页
China Leather
基金
国家自然科学基金(22075252)。
关键词
聚氨酯
硬脂酸丁酯
相变潜热
拉伸强度
polyurethane
butyl stearate
latent heat
tensile strength