期刊文献+

FK和Shearlet域联合压缩感知数据重构技术 被引量:3

Compressed sensing data reconstruction technology in joint FK and Shearlet domain
下载PDF
导出
摘要 由于稀疏炮检点采集或野外采集因素造成地震数据的不规则,影响地震资料成像质量。基于压缩感知理论的重构方法,能够在有限采样的情况下有效重构地震数据。由于地震道的空间随机缺失在波数域表现为空间假频,文中将时空域的地震道重构转化为频率波数(FK)域的随机噪声压制问题。对FK域数据做多尺度、多方向性的剪切(Shearlet)变换,通过反演迭代消除FK域的空间假频,从而实现地震道的空间重构。该方法是在FK变换后进行Shearlet变换,可以看作一种新的稀疏基变换。由于全局随机采样因子频谱呈白噪特征,分段随机采样因子频谱呈蓝谱特征,因此分段采样数据有效信号与假频的混叠相对减少,更有利于数据重构。实验结果表明,分段随机采样FK+Shearlet域重构精度高于全局随机采样Shearlet域重构、分段随机采样Shearlet域重构和全局随机采样FK+Shearlet域重构。 The irregularity of seismic data caused by sparse source-receiver acquisition or field acquisition affects the imaging quality of seismic data.The reconstruction method based on compressed sensing theory can effectively reconstruct seismic data under the condition of limited sampling.Since the spatial random absence of seismic traces is shown as spatial aliasing in the wavenumber domain,we transform the reconstruction of seismic traces in the spatiotemporal domain into random noise suppression in the frequency-wavenumber(FK)domain.Specifically,the multi-scale and multi-directional Shearlet transform is performed on FK-domain data,and by iterative inversion to eliminate spatial aliasing in the FK domain,the spatial reconstruction of seismic traces is realized.The method in this paper performs the Shearlet transform after the FK transform,which can be viewed as a new sparse basis transform.Since the spectrum of the global random sampling factor is characterized by white noise,and the spectrum of the piecewise random sampling factor is characterized by blue spectra,the interference of the effective signal and aliasing of the piecewise sampling data is relatively reduced,which is more conducive to data reconstruction.The reconstruction experiment indicates that the reconstruction accuracy in the FK + Shearlet domain for piecewise random sampling is higher than that in the Shearlet domain for global or piecewise random sampling as well as that in the FK + Shearlet domain for global random sampling.
作者 闫海洋 周辉 刘海波 徐朝红 孙赞东 刘昭 YAN Haiyang;ZHOU Hui;LIU Haibo;XU Zhaohong;SUN Zandong;LIU Zhao(State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China;CNPC Key Laboratory of Geophysical Exploration,China University of Petroleum(Beijing),Beijing 102249,China;College of Geophysics,China University of Petroleum(Beijing),Beijing 102249,China;BGP Offshore,CNPC,Tianjin 300457,China)
出处 《石油地球物理勘探》 EI CSCD 北大核心 2022年第3期557-569,I0003,共14页 Oil Geophysical Prospecting
基金 国家重点研发计划变革性技术关键科学问题重点专项“多信息相容约束高效全波形反演方法研究”(2018YFA0702502)资助。
关键词 压缩感知 数据重构 SHEARLET变换 分段随机 稀疏采样 compressed sensing data reconstruction Shearlet transform piecewise random sparse sampling
  • 相关文献

参考文献23

二级参考文献189

共引文献199

同被引文献48

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部