摘要
三维地震勘探现已成为地震勘探的主流方式。常规二维Radon变换多次波压制方法只针对二维地震数据,并未考虑地震波场三维传播的特点,即不适用于三维地震数据处理,故亟待探寻针对三维地震数据的处理方法。文中基于对三维Radon变换多次波压制方法的深入研究,针对三维地震数据变换域分辨率低的问题,采用迭代阈值收缩的方法提高变换的分辨率;针对数据中振幅随炮检距变化的特点,引入正交多项式变换,对沿不同曲率方向地震数据振幅的变化进行拟合。模拟数据和实际数据的测试结果表明,通过三维高精度保幅Radon变换可获得高分辨率的模型域数据,能有效分离一次波与多次波,同时多项式拟合可保护有效波的振幅,高保真地实现多次波的压制。
3Dseismic exploration has become a common method for seismic exploration.Conventional 2D Radon transform for multiple attenuation is only applicable for seismic data acquired in a 2Dmanner and does not consider the characteristic of 3Dpropagation of a seismic wave field.Therefore,it is not suitable for 3Dseismic data processing.It is urgent to explore a processing algorithm for 3Dseismic data.After the systematic study of 3D Radon transform for multiple attenuation,iterative threshold shrinkage is adopted to improve the resolution of the 3D Radon transform domain.Considering the characteristic of amplitude versus offset,orthogonal polynomial transformation is introduced to fit the amplitude variation of seismic data in different curvature directions.The results of synthetic data and real data show that the 3Dhigh-precision amplitude-preserving Radon transform can achieve high-resolution data in the model domain and,effectively separate primaries and multiples.Moreover,the polynomial fitting can protect the amplitude of effective waves.The proposed method enables multiple attenuation with high fidelity.
作者
马继涛
刘仕友
廖震
MA Jitao;LIU Shiyou;LIAO Zhen(College of Geophysics,China University of Petroleum(Beijing),Beijing 102249,China;Hainan Branch,China National Offshore Oil Corporation(CNOOC),Haikou,Hainan 570100,China;School of Geoscience,China University of Petroleum(East China),Qingdao,Shandong 266580,China)
出处
《石油地球物理勘探》
EI
CSCD
北大核心
2022年第3期582-592,I0004,共12页
Oil Geophysical Prospecting
基金
国家重点研发计划项目“深海关键技术与装备”(2019YFC0312004)
中国石油天然气集团有限公司—中国石油大学(北京)战略合作科技专项(ZLZX2020-03)
中国石油大学(北京)科研基金资助项目(ZX20200083)联合资助。
关键词
三维Radon变换
迭代阈值收缩
高分辨率
多项式拟合
保幅
3D Radon transform
iterative threshold shrinkage
high resolution
polynomial fitting
amplitude preserving