期刊文献+

Optoelectronic devices informatics: optimizing DSSC performance using random-forest machine learning algorithm 被引量:3

原文传递
导出
摘要 This paper provides an attempt to utilize machine learning algorithm,explicitly random-forest algorithm,to optimize the performance of dye sensitized solar cells(DSSCs)in terms of conversion efficiency.The optimization is implemented with respect to both the mesoporous TiO_(2) active layer thickness and porosity.Herein,the porosity impact is reflected to the model as a variation in the effective refractive index and dye absorption.Database set has been established using our data in the literature as well as numerical data extracted from our numerical model.The random-forest model is used for model regression,prediction,and optimization,reaching 99.87%accuracy.Perfect agreement with experimental data was observed,with 4.17%conversion efficiency.
出处 《Optoelectronics Letters》 EI 2022年第3期148-151,共4页 光电子快报(英文版)
  • 相关文献

同被引文献31

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部