期刊文献+

碳中和趋势下数学模拟在污水处理系统中的发展与综合应用 被引量:14

Development and comprehensive application of mathematical simulation in sewage treatment system under the trend of carbon neutralization
下载PDF
导出
摘要 数学模拟技术在污水处理方面被广泛应用,为了系统总结相关技术,本文回顾了污水处理系统中数学模拟技术的发展历程;综述了活性污泥模型(ASM)与机器学习(ML)在水质预测及参数工况优化领域中的应用;重点探究了污水处理系统中温室气体排放模型,以及多目标优化模型在污水处理系统中温室气体排放(GHG)、出水质量(EQI)和运行成本(OCI)的权衡问题;归纳了数学模拟技术在实现污水厂能量自给与资源回收的应用发展.研究结果表明数学模拟技术能准确预测出水水质、快速优化工艺参数、权衡温室气体排放、出水水质与运行成本之间的关系、以及提高资源回收效率等.因此,数值模拟技术可有效指导污水处理工艺的运行优化以及管理,为污水处理行业减污降碳协同增效提供技术支撑. Mathematical simulation technology(MST)has been widely applied in wastewater treatment,therefore,in order to systematically summarize these related technologies,this study reviewed the development of MST in sewage treatment system,and the application of activated sludge model(ASM)and machine learning(ML)in water quality prediction and parameter optimization;In addition,this paper mainly discussed the models of greenhouse gas emission in sewage treatment system,and the trade-off of multi-objective optimization model in sewage treatment system with the objectives of greenhouse gas emission(GHG),effluent quality(EQI)and operating cost(OCI).Furthermore,this paper also summarized the development of MST to achieve the energy self-sufficiency and resource recovery of sewage plant.The results from this study showed that MST can accurately predict the effluent quality,quickly optimize the process parameters,weigh the relationship among greenhouse gas emission,effluent quality and the operation cost,and improve the resource recovery efficiency.Overall,MST can effectively guide the operation optimization and management of sewage treatment process,and ultimately provide technical supports for the synergy of pollution reduction and carbon reduction in sewage treatment industry.
作者 陈治池 何强 蔡然 罗华瑞 罗南 宋忱馨 程鸿 CHEN Zhi-chi;HE Qiang;CAI Ran;LUO Hua-rui;LUO Nan;SONG Chen-xin;CHENG Hong(Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment,State Ministry of Education,Chongqing University,Chongqing 400045,China;Beijing Capital Eco-Environment Protection Group Co.,Ltd.,Beijing 10000,China;Shenzhen Huanshui Investent Group Co.,Ltd,Shenzhen 518031,China;Sichuan Shuihui Ecological Environment Management Co.,Ltd,Neijiang 641000,China)
出处 《中国环境科学》 EI CAS CSCD 北大核心 2022年第6期2587-2602,共16页 China Environmental Science
基金 重庆市技术创新与应用发展专项(cstc2019jscx-tjsbX0002) 住房和城乡建设部科学技术计划项目(2020-R-027) 企业自主研发课题“基于数字化手段的流域水环境综合治理系统研究1.0”。
关键词 碳中和 活性污泥模型 机器学习 温室气体 多目标优化 资源回收 carbon neutralization activated sludge model machine learning greenhouse gases multi-objective optimization resource recovery
  • 相关文献

参考文献23

二级参考文献258

共引文献1706

同被引文献189

引证文献14

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部