期刊文献+

采用高频注入法的直流微电网无通信均流控制 被引量:3

Current Sharing Control Without Communication Based on High Frequency Injection Method in DC Microgrid
原文传递
导出
摘要 基于注入低频交流电压的DC-DC变换器f-I下垂控制实现了无通信均流控制,但仍存在暂态性能差的问题。在分析注入频率大小对均流控制动态性能影响的基础上,将高于闭环截止频率的交流电压小信号注入到DC-DC变换器的电压中,提高无功补偿环节的反应速度并改善系统动态均流性能。设计了交流电压稳压器,抑制电压闭环对注入信号的衰减作用,保持注入高频交流小电压幅值稳定。利用小信号模型分析了均流控制性能和稳定性。StarSim硬件在环实验表明,基于高频注入法的均流方法显著提高了动态调节速度。 The f-I droop control of bi-directional DC-DC converter based on low frequency AC voltage injection has achieved current sharing control without communication,but it is still poor in its transient performance.The influence of injection frequency on the dynamic performance of current sharing control is analyzed.In order to improve the current sharing performance of the bidirectional DC-DC converter,a small AC signal with frequency higher than the closed-loop cut-off frequency is injected into the voltage of DC-DC converter,which improves the calculation speed of the reactive power.An AC voltage regulator is designed to keep a stable amplitude of the injected AC voltage.The small signal model is used to analyze the performance and stability of the current sharing control.The experiment based on the StarSim hardware in the loop shows that the current sharing method based on the high frequency injection method significantly improves the dynamic regulation speed.
作者 庄绪州 刘彦呈 张峰魁 曾宇基 朱鹏莅 ZHUANG Xuzhou;LIU Yancheng;ZHANG Fengkui;ZENG Yuji;ZHU Pengli(Marine Engineering College,Dalian Maritime University,Dalian 116026,Liaoning Province,China)
出处 《电网技术》 EI CSCD 北大核心 2022年第6期2348-2355,共8页 Power System Technology
基金 国家自然科学基金项目(51979021,51709028) 双一流高校建设项目(BSCXXM009)。
关键词 直流微电网 均流控制 高频注入法 下垂控制 DC microgrid current sharing high-frequency injection droop control
  • 相关文献

参考文献8

二级参考文献83

  • 1鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:934
  • 2Blaabjerg F,Teodorescu R,Liserre M. Overview of control and grid synchronization for distributed power generation systems[J].IEEE Transactions on Industrial Electronics,2006,(05):1398-1409.doi:10.1109/TIE.2006.881997.
  • 3Lasseter R H,Paigi P. Microgrid:A conceptual solution[A].Aachen,Germany:IEEE,2004.4285-4290.
  • 4Hatziargyriou N,Asano H,Iravani R. Microgrids[J].IEEE Power and Energy Magazine,2007,(04):78-94.doi:10.1109/MPAE.2007.376583.
  • 5Biczel P. Power electronic converters in DC microgrid[A].Gdansk,Poland:Industrial Electronics Society,2007.1-6.
  • 6SanninoA,Postiglione G,Bollen M H J. Feasibilit y ofaDC network for commercialfacilities[J].IEEE Transactions on Industry Applications,2003,(05):1499-1507.
  • 7Baran M E,Mahajan N R. DC distribution for industrial systems:opportunities and challenges[J].IEEE Transactions on Industry Applications,2003,(06):1596-1601.
  • 8Salomonsson D,Sannino A. Low-voltage DC distribution system for commercial power systems with sensitive electronic loads[J].IEEE Transactions on Power Delivery,2007,(03):1620-1627.doi:10.1109/TPWRD.2006.883024.
  • 9Ito Y,Yang Z,Akagi H. DC microgrid based distribution power generation system[A].Xi'an,China:Power Electronics Society,2004.1740-1745.
  • 10Kakigano H,Miura Y,Ise T. DC micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices[A].Jeju,Korea:Power Electronics Society,2006.1-7.

共引文献261

同被引文献35

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部