期刊文献+

Efficient passivation of DY center in CH_(3)NH_(3)PbBr_(3) by chlorine:Quantum molecular dynamics

原文传递
导出
摘要 MAPbBr_(3)(MA=CH_(3)NH_(3)^(+))doping with bismuth increases electric conductivity,charge carrier density and photostability,reduces toxicity,and expands light absorption.However,Bi doping shortens excited-state lifetimes due to formation of DY−charge recombination centers.Using nonadiabatic molecular dynamics and time-domain density functional theory,we demonstrate that the DY−center forms a deep,highly localized hole trap,which accelerates nonradiative relaxation ten-fold and is responsible for 90%of carrier losses.Hole trapping occurs by coupling between the valence band and the trap state,facilitated by the Br atoms surrounding the Bi dopant.Passivation of the DY−center with chlorines heals the local geometry distortion,eliminates the trap state,and makes the carrier lifetimes longer than even in pristine MAPbBr_(3).The decreased charge recombination arises from reduced nonadiabatic coupling and shortened coherence time,due to diminished electron–hole overlap around the passivated defect.Our study demonstrates accelerated nonradiative recombination in Bi-doped MAPbBr_(3),suggests a strategy for defect passivation and reduction of nonradiative energy losses,and provides atomistic insights into unusual defect properties of metal halide perovskites needed for rational design of high-performance perovskite solar cells and optoelectronic devices.
出处 《Nano Research》 SCIE EI CSCD 2022年第3期2112-2122,共11页 纳米研究(英文版)
基金 the Beijing Science Foundation(No.2212031) the National Natural Science Foundation of China(Nos.51861135101,21973006,21573022,21688102 and 21590801) R.L.acknowledges the Recruitment Program of Global Youth Experts of China and the Beijing Normal University Startup.O.V.P.acknowledges funding from the U.S.Department of Energy(No.DE SC0014429).
  • 相关文献

参考文献5

二级参考文献48

  • 1Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304-312.
  • 2Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia,E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, 498-500.
  • 3Mikhnenko, O. V.; Azimi, H.; Scharber, M.; Morana, M.; Blom, P. W. M.; Loi, M. A. Exciton diffusion length in narrow bandgap polymers. Energy Environ. Sci. 2012, 5, 6960-6965.
  • 4Johnston, K. W.; Pattantyus-Abraham, A. G.; Clifford, J. P.; Myrskog, S. H.; Hoogland, S.; Shukla, H.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. Appl. Phys. Lett. 2008, 92, 122111.
  • 5Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789-1791.
  • 6O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Ti02 films. Nature 1991, 353, 737-740.
  • 7Jean, J.; Chang, S.; Brown, P. R.; Cheng, J. J.; Rekemeyer,P. H.; Bawendi, M. G.; Gradecak, S.; Bulovic, V. ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells. Adv. Mater. 2013, 25, 2790-2796.
  • 8Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011,3, 4088^1093.
  • 9Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
  • 10Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部