期刊文献+

用于实时弹道滤波的Sage-Husa改进算法 被引量:1

Improved Sage-Husa Algorithm for Real-time Trajectory Filtering
下载PDF
导出
摘要 为了解决实时弹道测量数据滤波过程中量测噪声统计特性未知且时变的实际问题,对Sage-Husa算法进行了多种改进,提出了改进的Sage-Husa自适应卡尔曼滤波(improved Sage-Husa adaptive Kalman filter,ISHAKF)算法。该算法将量测噪声协方差估计矩阵变换为半正定矩阵和正定矩阵之和的形式,保证了量测噪声协方差估计矩阵的正定性,消除了量测噪声协方差估计矩阵非正定导致滤波异常的缺陷。设计了一种自适应遗忘因子,提升了滤波收敛速度,解决了量测噪声统计特性突变时Sage-Husa算法收敛较慢的问题。对卡尔曼增益矩阵进行了抗差改进,增强了算法的鲁棒性,削弱了野值对滤波效果的影响。分别对正定性改进、遗忘因子改进和抗差改进进行了对比仿真实验,对比结果验证了Sage-Husa算法改进的正确性和有效性。通过ISHAKF算法的实例应用,证明了该算法在实时弹道滤波上,具有更高的实时性、自适应性和抗差性,滤波效果提升明显。 In order to solve the practical problems of unknown and time-varying measurement noise statistics in real-time trajectory filtering,the algorithm of improved Sage-Husa adaptive Kalman filter(ISHAKF)was proposed based on the improvements of Sage-Husa Kalman filter algorithm.By converting the covariance estimation matrix of measurement noise into sum of a positive semi-definite matrix and a positive definite matrix,the algorithm ensures the positive definiteness of the measurement noise covariance estimation matrix.Thus,the defect of abnormal filtering caused by non-positive definite covariance estimation matrix of measurement noise can be eliminated.An adaptive forgetting factor was designed,which improved the filter convergence speed and overcomed the problem of the slow convergence speed of Sage-Husa algorithm when measurement noise statistics were abrupt.The robustness of Kalman gain matrix was improved to increase the robust performance of the algorithm and weaken the influence of outliers on the filtering effect.Then,comparative simulation experiments were carried out on the improvements of positive definiteness,forgetting factor and robustness separately.The comparison results verify the correctness and effectiveness of improved Sage-Husa algorithm.Through the example application of ISHAKF algorithm,it is proved that the real-time performance,adaptability and robustness of ISHAKF algorithm are better in real-time trajectory filtering.Also,the filtering effect of the algorithm is obviously promoted.
作者 段鹏伟 宫志华 徐旭 赵春霞 DUAN Pengwei;GONG Zhihua;XU Xu;ZHAO Chunxia(Unit 63861 of PLA,Baicheng 137001,China)
机构地区 中国人民解放军
出处 《弹道学报》 CSCD 北大核心 2022年第2期10-16,共7页 Journal of Ballistics
基金 原总装备部青年科技基金项目(SYFD1501108)。
关键词 卡尔曼滤波 实时自适应滤波 Sage-Husa算法 遗忘因子 量测噪声 Kalman filtering real-time adaptive filtering Sage-Husa algorithm forgetting factor measurement noise
  • 相关文献

参考文献10

二级参考文献69

  • 1隋立芬,刘雁雨,王威.自适应序贯平差及其应用[J].武汉大学学报(信息科学版),2007,32(1):51-54. 被引量:12
  • 2鲁平,赵龙,陈哲.改进的Sage-Husa自适应滤波及其应用[J].系统仿真学报,2007,19(15):3503-3505. 被引量:60
  • 3Y. Yang,H. He,G. Xu.Adaptively robust filtering for kinematic geodetic positioning[J].Journal of Geodesy (-).2001(2-3)
  • 4Y. Yang,L. Song,T. Xu.Robust estimator for correlated observations based on bifactor equivalent weights[J].Journal of Geodesy (-).2002(6-7)
  • 5Yang Yuanxi.Robust bayesian estimation[J].Bulletin Géodésique.1991(3)
  • 6Y. Yang,A. Zeng,J. Zhang.Adaptive collocation with application in height system transformation[J].Journal of Geodesy.2009(5)
  • 7P. J. G. Teunissen,A. R. Amiri-Simkooei.Least-squares variance component estimation[J].Journal of Geodesy.2008(2)
  • 8Peiliang Xu,Yunzhong Shen,Yoichi Fukuda,Yumei Liu.Variance Component Estimation in Linear Inverse Ill-posed Models[J].Journal of Geodesy.2006(2)
  • 9K.-R. Koch,J. Kusche.Regularization of geopotential determination from satellite data by variance components[J].Journal of Geodesy.2002(5)
  • 10Ou Ziqiang.Estimation of variance and covariance components[J].Bulletin Géodésique.1989(2)

共引文献48

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部