期刊文献+

浮动利率下基于不确定分数阶微分方程的期权定价研究 被引量:1

Option Pricing Based on Uncertain Fractional Differential Equation with Floating Interest Rate
原文传递
导出
摘要 期权定价是金融数学领域中最复杂的问题之一.随着不确定理论公理化的建立,利用不确定理论进行期权定价的研究逐步展开,而分数阶微分方程的分数阶导数项可以很好地刻画金融市场的记忆特性.本文在机会空间中提出了一种新的不确定市场模型,假设股票价格满足Caputo型的不确定分数阶微分方程,且随机利率满足随机微分方程.基于该模型,利用Mittag-Leffler函数和微分方程的α-轨道我们给出了蝶式期权和欧式价差期权的定价公式及数值例子. Option pricing is one of the most complex problems in all financial mathematics.With the establishment of axiomatization of uncertainty theory,the research of option pricing based on uncertainty theory is gradually expanded and the fractional derivative term of fractional differential equation can well describe the memory characteristics of the market.Uncertainty and randomness are two basic types of indeterminacy.Chance space is initialized for modelling complex systems with not only uncertainty but also randomness.In order to model the financial market with uncertainty,randomness and memory characteristics,this paper presents a new version of uncertain market model on a chance space by assuming that stock price satisfies an uncertain fractional differential equation for Caputo type and stochastic interest rate satisfies a stochastic differential equation.By using the Mittag-Leffler function andα-path of the differential equation,the pricing formulas of butterfly option and European spread option based on the proposed model are investigated as well as some numerical examples.
作者 雷子琦 周清 LEI ZIQI;ZHOU QING(School of Science,Beijing University of Posts and Telecommunications,Beijinp 100876,China)
出处 《应用数学学报》 CSCD 北大核心 2022年第3期401-420,共20页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11871010,11971040) 中央高校基本科研业务费专项资金(2019XD-A11)资助项目。
关键词 机会理论 不确定分数阶微分方程 蝶式期权 欧式价差期权 chance theory uncertain fractional differential equation butterfly option european spread option
  • 相关文献

参考文献1

二级参考文献13

  • 1Black F, Scholes M. The Pricing of Options and Corporate Liabilities [J]. J Political Economy, 1973, 81(3): 637 654.
  • 2Merton R C. Theory of Rational Option Pricing [J]. Bell J Econom and Management Sci, 1973, 4(1) : 141-183.
  • 3Coleman T F, LI Yuying, Verma A. Reconstructing the Unknown Local Volatility Function [J]. J Comput Finance, 1999, 2(3): 77-100.
  • 4Hull J, White A. The Pricing of Options on Assets with Stochastic Volatilities [J]. J Finance, 1987, 42(2) : 281-300.
  • 5Heston S L. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options [J]. Rev Financ Stud, 1993, 6(2): 327-343.
  • 6Lyons T J. Uncertain Volatility and the Risk Free Synthesis of Derivatives[J]. Appl Math Finance, 1995, 2(2) : 117-133.
  • 7Ave|Ianeda M, Levy A, Paras A. Pricing and Hedging Derivative Securities in Markets with Uncertain Volati[ities [J]. App Math Finance, 1995, 2(2): 73-88.
  • 8Dokuchaev N G, Andrey V S. The Pricing of Options in a Financial Market Model with Transaction Costs and Uncertain Volatility [J]. J Multinational Financial Management, 1998, 8(2/3) : 353-364.
  • 9Forsyth P A, Vetzal K R. Implicit Solution of Uncertain Volatility/Transaction Cost Option Pricing Models with Discretely Observed Barriers [J]. Appl Numer Math, 2001, 36(4): 427-445.
  • 10Pooley D M, Forsyth P A, Vetzal K R. Numerical Convergence Properties of Option Pricing PDEs with Uncertain Volatility [J]. IMA J Numer Anal, 2003, 23(2) .. 241-267.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部