摘要
This study conducted the numerical models validated by wind-tunnel experiments to investigate the issues of Re-independence of indoor airflow and pollutant dispersion within an isolated building.The window Reynolds number(Re_(w))was specified to characterize the indoor flow and dispersion.The indicators of RRC(ratio of relative change)or DR(K_DR)(difference ratio of dimensionless concentration)<5%were applied to quantitatively determine the critical Rew for indoor flow and turbulent diffusion.The results show that the critical Re(Re_(crit)) value is position-dependent,and Re_(crit) at the most unfavorable position should be suggested as the optimal value within the whole areas of interest.Thus Re(H,orit)=27,000 is recommended for the outdoor flows;while Re_(w,crit)=15,000 is determined for the indoor flows due to the lower part below the window showing the most unfavorable.The suggested Re_(w,crit)(=15,000)for indoor airflow and cross ventilation is independence of the window size.Moreover,taking K_DR≤5% as the indicator,the suggested Re_(w,crit) for ensuring indoor pollutant diffusion enter the independence regime should also be 15,000,indicating that indoor passive diffusion is completely determined by the flow structures.The contours of dimensionless velocity(U/U_(0))and concentration(K)against the increasing Re(w) further confirmed this critical value.This study further reveals the Re-independence issues for indoor flow and dispersion to ensure the reliability of the data obtained by reduced-scale numerical or wind-tunnel models.
基金
This work was supported by Shanghai Sailing Program(No.18YF1417600),Scientific and Innovative Action Plan of Shanghai(No.20dz 1204008)
the National Natural Science Foundation of China(No.51536006).