摘要
通过等温热压缩实验研究了Zr-1.0Sn-1.0Nb-0.1Fe合金在变形温度为550、600、650和700℃和应变速率为0.01、0.1、1和10 s^(-1)以及最大变形程度为70%条件下的热变形行为。在考虑变形热效应的基础上,对真应力-真应变曲线进行了温度修正,并在Arrhenius双曲正弦函数方程的基础上建立了峰值应力模型。通过Deform对Zr-1.0Sn-1.0Nb-0.1Fe合金板材在初始温度为630℃和轧制速度为30、45和60 m·min^(-1)条件下从板厚104 mm轧制至19 mm的多道次热轧过程进行了有限元模拟,并与热轧实验结果进行对比,验证了有限元模型的准确性。此外,研究了轧制速度对热轧过程中轧板温度、轧制力以及最终板厚的影响。结果表明:随着轧制速度的增大,轧板的表面温度和心部温度随之增大,而轧制力和最终板厚随之减小。
The thermal deformation behavior of Zr-1.0 Sn-1.0 Nb-0.1 Fe alloy under the conditions of deformation temperature of 550, 600, 650 and 700 ℃, strain rate of 0.01, 0.1, 1 and 10 s^(-1)and maximum deformation amount of 70% was studied by isothermal hot compression experiment. Then, on the basis of considering deformation thermal effect, the true stress-ture strain curve was corrected by temperature, and the peak stress model was established on the basis of Arrhenius hyperbolic sine function equation. Furthermore, the multi-pass hot rolling process of Zr-1.0 Sn-1.0 Nb-0.1 Fe alloy sheet at the initial temperature of 630 ℃ and the rolling speed of 30, 45 and 60 m·min^(-1)from the sheet thickness of 104 mm to 19 mm was simulated by Deform and compared with the experimental results of hot rolling to verify the accuracy of the finite element model. In addition, the influences of rolling speed on the rolled sheet temperature, rolling force and final sheet thickness during the hot rolling process were studied. The results show that with the increasing of rolling speed, the surface temperature and core temperature of rolled sheet increase, while the rolling force and the final sheet thickness decrease.
作者
吴泽华
王克鲁
邓偲瀛
宋鸿武
张士宏
王犇
Wu Zehua;Wang Kelu;Deng Siying;Song Hongwu;Zhang Shihong;Wang Ben(School of Aeronautical Manufacturing Engineering,Nanchang Hangkong University,Nanchang 330063,China;Shi-changxu Innovation Center for Advanced Materials,Institute of Metal Research Chinese Academy of Sciences,Shenyang 110016,China;National Nuclear Baoti Zirconium Industry Co.,Ltd.,Baoji 721013,China)
出处
《锻压技术》
CAS
CSCD
北大核心
2022年第6期132-140,共9页
Forging & Stamping Technology
基金
能源局核能重大专项(20192X06002001)。