期刊文献+

基于重置温度方法的双参数介尺度气固传热模型构建

Construction of two parameter mesoscale heat transfer model for gas-solid flow based on resetting temperature method
下载PDF
导出
摘要 颗粒聚团等介尺度结构在气固两相流中普遍存在,这些介尺度非均匀结构直接影响气固流动特性及气固接触效率,进而影响气固相间传热、传质及化学反应过程。在更适合工业大尺度气固传热模拟的粗网格方法中缺乏准确度高、简单易用且可以考虑介尺度非均匀结构影响的传热模型。采用计算流体力学-离散单元法(CFD-DEM)研究了气固两相流相间传热,为了保证气固相间持续传热,采用了两种维持气固相间传热温差的方法,并讨论了两种方法的优缺点。方法一:给气相能量方程添加热源项;方法二:每间隔一段时间重置气相温度,重置温度后气固两相自由传热,两种方法中均保持固相温度不变。结果表明聚团界面位置的局部单位体积气固传热量最大,重置温度方法在稀相和界面位置的局部单位体积传热量与总单位体积传热量之比大于热源项方法,而在浓相位置的局部单位体积传热量与总单位体积传热量之比小于热源项方法。通过过滤CFD-DEM计算数据,为重置温度方法构建了双参数(过滤固含率、过滤尺度)传热系数修正因子模型,通过先验分析评价了模型的表现,研究表明所构建模型在过滤网格尺度为5~40倍颗粒直径范围内优于文献中已有的双参数模型。 Mesoscale structures such as clusters are common in gas-solid two-phase flows.These mesoscale heterogeneous structures directly affect the gas-solid flow characteristics and gas-solid contact efficiency,and then affect the gas-solid interphase heat transfer,mass transfer and chemical reaction process.In the coarse grid method which is more suitable for industrial large-scale gas-solid heat transfer simulation,there is a lack of heterogeneous heat transfer model with high accuracy,simple and easy to use,and can consider the influence of mesoscale non uniform structure.Computational fluid dynamics-discrete element method(CFD-DEM)is used to study the interphase heat transfer of gas-solid two-phase flow.In order to ensure the continuous heat transfer between gas and solid, two methods to maintain the temperature difference between gas and solid during the heat transfer procedure are adopted, and the advantages and disadvantages of the two methods are discussed. Method 1: add a heat source term to the gas phase energy equation;Method 2: reset the gas phase temperature at intervals and free heat transfer between the gas-solid two phases after resetting the temperature. The solid-phase temperature remains unchanged in both methods. The results show that the local gas-solid heat transfer per unit volume at the cluster interface is the largest. The ratio of local gas-solid heat transfer per unit volume to the total gas-solid heat transfer per unit volume at the dilute phase and the interface of the clusters in the testing temperature method is greater than that of the heat source term method, while the ratio of local gas-solid heat transfer per unit volume to the total gas-solid heat transfer per unit volume at the dense phase is less than that of the heat source term method. By filtering the CFD-DEM calculation data, a two parameter (filtered solid volume fraction and filter size) heat transfer coefficient correction factor model is constructed for the reset temperature method. The performance of the model is evaluated through a priori analysis. The results show that the proposed model is better than the existing two parameter model in the literature when the filter size in the range of 5 to 40 times the particle diameter.
作者 刘怡琳 李钰 余亚雄 黄哲庆 周强 LIU Yilin;LI Yu;YU Yaxiong;HUANG Zheqing;ZHOU Qiang(School of Chemical Engineering and Technology,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China;Engineering Research Center of New Energy System Engineering and Equipment,University of Shaanxi Province,Xi’an 710049,Shaanxi,China;State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China)
出处 《化工学报》 EI CAS CSCD 北大核心 2022年第6期2612-2621,共10页 CIESC Journal
基金 国家自然科学基金项目(52006172,21978228,91634114) 陕西省自然科学基金项目(2020JQ-050)。
关键词 介尺度 传热 气固两相流 计算流体力学-离散单元法 过滤技术 重置温度 mesoscale heat transfer gas-solid two-phase flow computational fluid dynamics-discrete element method filter technique reset temperature
  • 相关文献

参考文献3

二级参考文献25

  • 1崔守业,许友好,程从礼,龚剑洪.MIP技术的工业应用及其新发展[J].石油学报(石油加工),2010,26(S1):23-28. 被引量:14
  • 2许友好,龚剑洪,张久顺,龙军,徐惠.多产异构烷烃的催化裂化工艺两个反应区概念实验研究[J].石油学报(石油加工),2004,20(4):1-5. 被引量:32
  • 3许友好,龚剑洪,刘宪龙,马建国.第二反应区在MIP工艺过程中所起作用的研究[J].石油炼制与化工,2006,37(12):30-33. 被引量:17
  • 4许友好,汪燮卿.催化裂化过程反应化学的进展[J].中国工程科学,2007,9(8):6-14. 被引量:14
  • 5Lu BN, Wang W, LiJ H, Wang X H, Gao S Q, LuWM, Xu Y H, Long J. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model [J]. Chemical Engineering Science, 2007, 62 (18/19/ 20): 5487-5494.
  • 6Han I S, Chung C B. Dynamic modeling and simulation of a fluidized catalytic cracking process ( Ⅰ ) : Process modeling [J]. Chemical Engineering Science, 2001, 56 ( 5 ): 1951-1971.
  • 7Berry T A, McKeen T R, Pugsley T S, Dalai A K. Two- dimensional reaction engineering model of the riser section of fluid catalytic cracking unit [ J ]. Industrial Engineering Chemistry Research, 2004, 43 ( 18 ) : 5571-5581.
  • 8Gao J S, Xu C M, Lin S X, Yang G H, Gun Y C. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors l-J]. AIChEJournal, 1999, 45 (5): 1095-1113.
  • 9Lan X Y, Xu C M, Wang G, Wu L, Gao J S. CFD modeling of gas-solid flow and cracking reaction in two stage riser FCC reactors [J]. Chemical Engineering Science, 2009, 64:3847-3858.
  • 10GanJ Q, Zbao H, Berrouk A S, Yang C H, Shan H H. Numerical simulation of hydrodynamics and cracking reactions in the feed mixing zone of a multiregime gas solid riser reactor [ J]. Industrial & Engineering Chemistry Research, 2011, 50 (20): 11511-11520.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部