期刊文献+

采用PCA/D-S方法及FUKL融合算法的主轴系统弱故障动态判别与辨识

Dynamic discrimination and identification of weak faults in spindle system using PCA/D-S method and FUKL fusion algorithm
下载PDF
导出
摘要 针对由复杂非线性机床主要部件弱故障引起的与动态刚度不足相关的加工颤振较难量化判别溯源的问题,提出了一种基于PCA/D-S方法(PCA:主成分分析;D-S:证据理论)的故障部件粗判别,及基于FUKL融合算法(模糊集与相对熵融合)的细粒度辨识相结合的动刚度特征研究方法。该方法采集加工态的多部件振动特征,通过分离时频域特征值,利用PCA降维获得相关性强的低维特征,通过D-S计算合成证据概率,粗定位出故障部件,而后通过FUKL融合算法,进一步准确计算出故障辨识结果。将所提方法应用于实际颤振机床的故障溯源研究中,从4个主要部件中,以78.69%的合成证据概率判别出主轴系统存在动刚度不足,通过FUKL辨识出主轴系统的轴向动刚度不足的故障本质,通过拆解故障部件测试实际载荷,分析验证了所提算法运算结果的正确性。 Aiming at the problem of quantitatively identifying and tracing the source of machining chatter related to insufficient dynamic stiffness caused by weak faults of main components of complex nonlinear machine tools,a research method of dynamic stiffness characteristics based on rough identification of fault components based on PCA/D-S method(PCA:principal component analysis;D-S:evidence theory)and fine-grained identification based on FUKL fusion algorithm(fusion of fuzzy set and relative entropy)is proposed.In this method,the vibration characteristics of multi parts in the processing state are collected,and the time-frequency domain eigenvalues are separated,then the PCA is used to reduce the dimension to obtain the low-dimensional features with strong correlation.By calculating the synthetic evidence probability through D-S,the fault parts are roughly located,and then the fault identification results are further accurately calculated through FUKL fusion algorithm.The proposed method is applied to the fault traceability research of the actual chatter machine tool.From the four main components,the insufficient dynamic stiffness of the spindle system is identified with the synthetic evidence probability of 78.69%.The fault essence of the insufficient axial dynamic stiffness of the spindle system is identified by FUKL.The correctness of the operation results of the proposed algorithm is analyzed and verified by disassembling the faulty components and testing the actual load.
作者 王伟平 王琦 于洋 李宁 WANG Wei-ping;WANG Qi;YU Yang;LI Ning(School of Information Science and Engineering,Shenyang University of Technology,Shenyang 110870,China;Liaoning University of Technology,Jinzhou 121001,China;School of Mechanical Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《振动工程学报》 EI CSCD 北大核心 2022年第3期771-782,共12页 Journal of Vibration Engineering
基金 国家重点研发计划资助项目(2018YFB2000300)。
关键词 故障诊断 主轴系统 动刚度 PCA D-S证据理论 FUKL融合算法 fault diagnosis spindle system dynamic stiffness PCA D-S evidence theory FUKL fusion algorithm
  • 相关文献

参考文献5

二级参考文献40

  • 1黄田,赵兴玉,周立华,张大卫,曾子平,D.J.Whitehouse.Stiffness estimation of a parallel kinematic machine[J].Science China(Technological Sciences),2001,44(5):473-485. 被引量:3
  • 2张耀满,王旭东,蔡光起,滕立波.高速机床有限元分析及其动态性能试验[J].组合机床与自动化加工技术,2004(12):15-17. 被引量:32
  • 3李建华,赵翠萍.螺栓结合面接触刚度和接触阻尼[J].郑州大学学报(自然科学版),1993,25(4):53-57. 被引量:8
  • 4于振华,蔡远利.基于在线小波支持向量回归的混沌时间序列预测[J].物理学报,2006,55(4):1659-1665. 被引量:15
  • 5Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998,10(5): 1 299-1 319.
  • 6Ganey J L, Block W M, Jenness J S, et al. Mexican spotted owl home range and habitat use in pine-oak forest:implications for forest management[J]. Forest Science, 1999,45(1) : 127-135.
  • 7John Shawe-Taylor N C. Kernel Methods for Pattern Aanlysis [M]. Cambridge: Cambridge University Press, 2004.
  • 8Zhang L, Zhou W, Jiao L. Wavelet support vector machine [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004,34(1): 34-39.
  • 9Smola A J, Scholkopf B, Muller K R. The connection between regularization operators and support vector kernels[J]. Neural Networks, 1998,11 (4): 637- 649.
  • 10Wen X, Xu X, Cai Y. Least-squares wavelet kernel method for regression estimation[A]. International Conference on Natural Computation 2005[C]. Changsha, 2005:582-591.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部