摘要
磨抛加工作为复杂曲面制造的最后关键工序,直接决定着零件的轮廓精度与表面质量。机器人具有运动范围大、通用灵活与智能化等优势,结合砂带磨抛工艺被广泛应用于大型复杂曲面零件的加工。但机器人多轴耦合、末端响应速度慢与定位精度低等弊端导致磨抛加工接触力精准控制困难,难以实现机器人柔顺力控加工。针对机器人磨抛加工接触稳态力跟踪问题,在阻抗控制与基于环境参数估计的参考轨迹自适应生成方法上,提出采用遗传算法对位置误差引起的接触力误差进行补偿。结果表明,所提出的方法提高了机器人磨抛加工接触力的跟踪精度,接触稳态力跟踪误差降低约85.7%,具有较好的稳定性与可靠性,可以实现机器人在未知环境下的柔顺自适应加工。
Grinding and polishing,as the final key process in the manufacture of complex curved surfaces,directly determines the contour accuracy and surface quality of the parts.The robot has the advantages of large motion range,universal flexibility and intelligence,combined with the abrasive belt grinding and polishing process,it is widely used in the processing of large and complex curved parts.However,the disadvantages of robot multi-axis coupling,slow end response speed and low positioning accuracy make it difficult to accurately control the contact force of grinding and polishing processing,and it is difficult to realize the robot’s compliant force control processing.Aiming at the contact steady-state force tracking problem of robot grinding and polishing,this paper proposes a genetic algorithm to compensate the contact force error caused by position error based on the impedance control and the adaptive generation method of reference trajectory based on environmental parameter estimation.The results show that the proposed method improves the tracking accuracy of the contact force of the robot grinding and polishing process,and the tracking error of the contact steady-state force is reduced by about 85.7%.It has good stability and reliability,and can realize the flexible and adaptive processing of the robot in unknown environments.
作者
李振
赵欢
王辉
丁汉
LI Zhen;ZHAO Huan;WANG Hui;DING Han(State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,Wuhan 430074)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第9期200-209,共10页
Journal of Mechanical Engineering
基金
国家自然科学基金(52090054,52188102)
湖北省自然科学基金(2020CFA077)资助项目。
关键词
机器人
磨抛加工
力跟踪
接触稳态
参考轨迹自适应生成
robot
grinding and polishing
force tracking
contact steady-state
reference trajectory adaptive generation