摘要
如果同轴度公差的被测要素和基准要素上都有最小实体要求(LMR),那么,这种同轴度公差被称为双重最小实体要求的同轴度(DLMR同轴度)。DLMR同轴度能在保证轴件整体装配精度的同时降低制造成本。目前,DLMR同轴度缺乏准确的误差模型,这使其难以准确检测,因此,研究了DLMR同轴度的一种数学评定方法。分析了DLMR同轴度的公差要求和评定特性,建立了边界可以膨胀的自适应虚拟量规;分析了自适应虚拟量规的几何构造和运动过程,通过自适应虚拟量规与实际零件的运动评定实际零件的综合误差;分析了自适应虚拟量规法的计算偏差,通过“再定位”提高了自适应虚拟量规法的精度。最后,给出了这种方法在阶梯轴评定中的应用实例。
If the least material requirement(LMR)is applied to the tolerances feature and datum of coaxiality tolerance at the same time,it is called double least material requirement coaxiality(DLMR coaxiality).DLMR coaxiality can ensure the overall assembly accuracy of the stepped shaft and reduce the manufacturing cost,but the lack of accurate error model makes it difficult to accurately be evaluated.Therefore,the error evaluation method of DLMR coaxiality is investigated.The tolerance requirements and evaluation characteristics of DLMR coaxiality is analyzed,and an adaptive virtual gauge with expandable boundary is established.The geometric structure and motion process of the adaptive virtual gauge is analyzed,and the comprehensive error of the actual part is evaluated through the motion of the adaptive virtual gauge and the actual part.The calculation method of the adaptive virtual gauge is analyzed,and the accuracy of the adaptive virtual gauge method is improved by“repositioning”.Finally,an application of the proposed method in stepped shaft evaluation is given.
作者
秦玲
黄美发
唐哲敏
钟艳如
覃裕初
刘廷伟
QIN Ling;HUANG Meifa;TANG Zhemin;ZHONG Yanru;QIN Yuchu;LIU Tingwei(Guilin Institute of Information Technology,Guilin 541004;School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin 541004;School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004;School of Computing and Engineering,University of Huddersfield,Huddersfield,HD13DH,UK)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2022年第9期231-243,共13页
Journal of Mechanical Engineering
基金
国家自然科学基金(51765012)
广西高校中青年教师(科研)基础能力提升(2022KY0199)
广西博士后专项(C21RSC90YX07)资助项目。
关键词
误差评定
最小实体要求
基准
同轴度
error evaluation
least material requirement
datum
coaxiality