摘要
讨论广义Li啨nard方程极限环存在的充分条件谟没酚蚨ɡ碇っ鞴阋澹蹋閱Γ睿幔颍浞匠碳藁反嬖谛缘墓讨?,所作的环域的境界线均为已知曲线 ,因而在证明方程存在极限环的同时 ,可以估计极限环的位置。还证明了在限制G(±∞ ) =+∞被取消时 ,其极限环的存在性 ,当 φ(y) =y时即为文献 [1]的定理 2。
Some sufficient conditions of the existence of limit cycles of the Liénard equation are discussed. In the course of proving the annular region theorem, annular region's interior or exterior boundary can be given by contracting method of the paper. So we can estimate generally the position of limit cycles of the systems.The existence of limit cycles for given equation is discussed in another theorem,in which the hypothesis of G(±∞)=+∞ is omitted. Our results are the corresponding results of in the condition of φ(y) =y.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2002年第10期75-77,共3页
Journal of Chongqing University