期刊文献+

二阶脉冲微分方程Dirichlet边值问题解的存在性

Existence of Solutions for Second-Order Impulsive DifferentialEquations with Dirichlet Boundary Value Problems
下载PDF
导出
摘要 用Leray-Schauder不动点定理,研究二阶脉冲微分方程Dirichlet边值问题-u″(x)+c(x)u(x)+∑p i=1 c iδ(x-x i)u(x)=h(x,u(x))+∑q j=1 h jδ(x-y j),x∈(0,1),u(0)=u(1)=0解的存在性,其中:c∈C([0,1],ℝ),h∈C([0,1]×ℝ,ℝ),c i,h j∈ℝ,i=1,2,…,p,j=1,2,…,q;p,q∈N;Diracδ-函数为当x≠0时,δ(x)=0,δ(0)=+∞,∫+∞-∞δ(x)d x=1;点0<x_(1)<x_(2)<…<x_(p)<1和0<y_(1)<y_(2)<…<y_(q)<1为给定的脉冲点.设存在p(·),q(·)∈L 2[0,1],使得h(x,u)≤q(x)+p(x)u,x∈[0,1],u∈ℝ. By using Leray-Schauder fixed point theorem, the author studies existence of solutions for second-order impulsive differential equations with Dirichlet boundary value problems -u″(x)+c(x)u(x)+∑ p i=1 c iδ(x-x i)u(x)=h(x,u(x))+∑ q j=1 h jδ(x-y j), x∈(0,1),u(0)=u(1)=0, where c∈C([0,1],ℝ), h∈C([0,1]×ℝ,ℝ), c i,h j∈ℝ, i=1,2,…,p, j=1,2,…,q;p,q∈N, the Dirac delta function δ(x) =0 when x≠0, δ(0)=+∞, ∫ +∞ -∞ δ(x) d x=1, points 0<x 1<x 2<…<x p<1 and 0<y 1<y 2<…<y q<1 are given impulse points. There exist p(·),q(·)∈L 2[0,1] such that h(x,u) ≤q(x)+p(x) u , x∈[0,1], u∈ℝ.
作者 何婷 HE Ting(School of Mathematics and Statistics,Xidian University,Xi’an 710126,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2022年第3期475-480,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:12061064).
关键词 非线性微分方程 脉冲 LERAY-SCHAUDER不动点定理 DIRICHLET边值问题 nonlinear differential equation impulse Leray-Schauder fixed point theorem Dirichlet boundary value problem
  • 相关文献

参考文献1

二级参考文献9

  • 1He Zhimin, Yu Jianshe. Periodic boundary value problem for first order impulsive functional differential equations ,J Comp Appl Math, 2002,138 : 205-217.
  • 2Guo Dajun. Existence of solutions of boundary value problems for nonlinear second order impulsive differential equations in Banach spaces ,J Math Anal Appl, 1994,181:407-421.
  • 3Guo Dajun. Multiple positive solutions for first order nonlinear impulsive intergro-differential equations in a Banach space ,Appl Math Comput, 2003,143 : 233-249.
  • 4Guo Dajun, Sun Jinxian. Ordinary Differential Equation in Abstract Space (in Chinese), Jinan:Shandong Sci and Tech Press, 1989.
  • 5Barr D,Sherman T. Existence and uniqueness of solutions to three point boundary value problems, J Differential Equations, 1973,13 : 197-212.
  • 6Gupta C P,Trofimchuk S I. A sharper condition for the solvability of a three-point second order boundary value problem ,J Math Anal Appl, 1997,205 : 586-597.
  • 7Ma Ruyun. Existence theorem for a second order boundary value problem,J Math Anal Appl, 1997,212:430-442.
  • 8Guo Dajun,Sun Jinxian. Functional Methods of Nonlinear Ordinary Differential Equation(in Chinese),Jinan :Shandong Sci and Tech Press, 1995.
  • 9Zhao Yichun. Nonlinear Functional Analysis with Applications(in Chinese),Beijing:Higher Education Press, 1989.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部