期刊文献+

利用BP神经网络进行柴油机磨损故障监测 被引量:1

Wear Degree Diagnosis of Diesel Engine Parts
下载PDF
导出
摘要 基于滑油效能数据,通过构建容错率高、泛化能力强的BP神经网络模型诊断柴油机运转故障,实现对柴油机零件磨损状况的监测。经过比较光谱分析、自动磨粒分析等油液分析技术的优缺点,选择光谱分析法监测滑油效能数据;构建神经网络,经测试比较确定隐含层节点数及构建函数的最佳选择;利用已知的滑油效能数据训练构建的神经网络,经检测其所得误差在允许范围内,成功验证基于滑油效能数据、BP 神经网络,可以较精确的监测柴油机零件磨损状况,并通过神经网络结合 Simulink 和数据库,构建柴油机零件磨损状况模拟仿真系统,实现了对滑油效能数据的模拟。 Based on the lubricating oil efficiency data,this paper build a BP neural network model with high fault tolerance and strong generalization ability to diagnose the running status of diesel engine and realize the diagnosis of the wear degree of its parts.After comparing and analyzing the advantages and disadvantages of oil analysis techniques such as spectral analysis and automatic abrasive particle analysis,the spectral analysis method is selected to monitor the performance data of lubricating oil.The neural network is constructed,and the best number of hidden layer nodes and construction function are determined by testing and comparison.The measured oil performance data is used to train the neural network,the error obtained by the detection is within the allowable range.It verifies that based on the lubricating oil performance data,the BP neural network can more accurately monitor the degree of wear of diesel engine parts.Through the neural network combined with Simulink and the database,a simulation system for the wear degree of the diesel engine parts is constructed,and the simulation of the lubricating oil efficiency data is realized.
作者 胡浩帆 HU Haofan(COSCO Shipping Specialized Carriers Co.,Ltd.,Guangzhou 510623)
出处 《广东造船》 2022年第3期82-85,共4页 Guangdong shipbuilding
关键词 柴油机 滑油分析 磨损 神经网络 故障诊断 Diesel engine Lubricating oil analysis Wear Neural network Fault diagnosis
  • 相关文献

参考文献6

二级参考文献35

  • 1刘松平,郭恩明,陈积懋.无损检测新技术——永恒的发展主题[J].航空制造技术,2004,47(9):32-34. 被引量:9
  • 2陈廷明,丁连生.基于模糊模式识别法诊断船艇柴油机燃油系统故障[J].机电工程技术,2004,33(12):45-47. 被引量:3
  • 3许立学.设备管理中的机械故障诊断技术与状态监测维修[J].中山大学学报(自然科学版),2005,44(B06):185-188. 被引量:25
  • 4RUMELHAT D E, HIN'IDN D E. Learning internal representations by back propagation error[J] .Nature, 1986,323(9):533-536.
  • 5MAGNITSKII N A. Some new approaches to the construction and learning of artificial neural networks[J]. Computational Mathematics and Modeling. 2001,12(4) : 293-304.
  • 6ALEXANDER G P, BENTTTO F A. An accelerated learning algorithm for multi-layer perceptron network[J]. IEEE, Trans On Neural Network, 1994,5(3) : 493-497.
  • 7沈庆根.化工机器故障诊断技术[M].杭州:浙江大学出版社,1994..
  • 8飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2006.119-121.
  • 9文虎,复松波.设备故障诊断原理、技术及应用[M].北京:科学出版社,2006.
  • 10毛美娟,朱子新.王峰.机械装备油液监控技术及应用[M].北京:国防工业出版社,2006.

共引文献64

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部