期刊文献+

回声状态网络在气候预测方面的应用研究

Application Research of Echo State Network in Climate Prediction
下载PDF
导出
摘要 气候问题是全人类始终关注的问题,因此有必要对其进行预测研究。本文采用广州市黄埔区的气象数据作为研究对象,分析的数据包括当地的风速、平均气温、降水量等多个不同指标。以气温(即气候温度,单位℃)作为因变量,其余变量视作影响气温的自变量。在数据预处理方面,选择主成分分析方法(PCA)对样本进行降维处理,从中选出影响权重最大的自变量,以筛选过后的数据作为基础,采用回声状态网络预测气温的变化。实验结果表明,预测值和实际值的总体偏差较小,均保持在较低水平,绝对预测误差普遍处于15%以下,预测效果良好。采用对比模型(LSTM模型和ARIMA模型)对同样的数据进行预测。在实验中,我们发现对比模型的预测效果并不理想,在均方误差(MSE)的计算中,预测值和实际值的拟合精度较低。验证了ESN预测效果的优越性。 Climate issues are a constant concern for all mankind and therefore prediction studies are necessary.This paper uses meteorological data from Huangpu District,Guangzhou City,as the subject of the study.The data analyzed include a number of different indicators such as local wind speed,average temperature and precipitation.Air temperature(i.e.climatic temperature in °C) is used as the dependent variable and the remaining variables are considered as independent variables affecting air temperature.In terms of data pre-processing,Principal Component Analysis(PCA) was chosen to reduce the dimensionality of the samples,from which the independent variables with the greatest influence weights were selected,and the filtered data were used as the basis for predicting the changes in temperature using an echo state network.The experimental results show that the overall deviation between the predicted and actual values is small and remains low,with the absolute prediction error generally below 15% and the prediction effect is good.A comparison model(LSTM model and ARIMA model) was used to predict the same data.In our experiments,we found that the prediction results of the comparison models were not satisfactory,and the accuracy of fitting the predicted and actual values was low,as can be seen from the calculation of the mean squared error(MSE).The superiority of the prediction effect of ESN is verified.
作者 王人杰 刘海忠 朱洋 Wang Renjie;Liu Haizhong;Zhu Yang(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
机构地区 兰州交通大学
出处 《科学技术创新》 2022年第19期76-79,共4页 Scientific and Technological Innovation
关键词 气温预测 主成分分析 回声状态网络 绝对预测误差 均方误差 Temperature prediction Principal component analysis Echo state network Absolute prediction error Mean square error
  • 相关文献

参考文献5

二级参考文献33

  • 1洪飞,吴志美.基于小波的Hurst指数自适应估计方法[J].软件学报,2005,16(9):1685-1689. 被引量:16
  • 2Karunasinghea D S K, Liong S Y. Chaotic time series prediction with a global model: Artificial neural network [J]. J of Hydrology, 2006, 323(1-4): 92-105.
  • 3Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
  • 4Takens F. Daynamical systems and turbulence, lecture notes in mathematics[M]. Berlin: Sringer, 1981.
  • 5Peng D Z, Zhang Y. Dynamics of generalized PCA and MCA learning algorithms[J]. IEEE Trans on Neural Networks, 2007, 18(6): 1777-1784.
  • 6Hartmann H, Becker S, King Lorenz. Predicting summer rainfall in the Yangtze river basin with neural networks[J]. Int J of Climatology, 2008, 28(7): 925- 936.
  • 7Mika S, Scholkopf B, Smola A. Kernel PCA and denoising in feature space [C] . Advances in Neural Information Processing Systems. Cambridge: MTI Press, 1999: 524-536.
  • 8Alzate C, Suykens J A K. Kernel component analysis using an epsilon-insensitive robust loss function [J]. IEEE Trans on Neural Networks, 2008, 19(9): 1583- 1598.
  • 9Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.
  • 10Shi Z W, Han M. Support vector echo-state machine for chaotic time-series prediction[J]. IEEE Trans on Neural Networks, 2007, 18(2): 359-372.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部