期刊文献+

The Minkowski norm and Hessian isometry induced by an isoparametric foliation on the unit sphere 被引量:1

原文传递
导出
摘要 Let M_(t) be an isoparametric foliation on the unit sphere(S^(n−1)(1),g^(st))with d principal curvatures.Using the spherical coordinatesinduced by M_(t),we construct a Minkowski norm with the representation F=r√2f(t),which generalizes the notions of(α,β)-norm and(α1,α2)-norm.Using the technique of the spherical local frame,we givean exact and explicit answer to the question when F=r√2 f(t)really defines a Minkowski norm.Using the similar technique,we study the Hessian isometry Φ between two Minkowski norms induced by M_(t),which preservesthe orientation and fixes the spherical ξ-coordinates.There aretwo ways to describe this Φ,either by a system of ODEs,or by its restriction toany normal plane for M_(t),which is then reduced to a Hessian isometry between Minkowski norms on R^(2) satisfying certain symmetry and(d)-properties.When d>2,we prove that this Φ can be obtained by gluing positive scalar multiplications and compositions of the Legendre transformation and positive scalar multiplications,so it must satisfy the(d)-property for any orthogonal decomposition R^(n)=V'+V'',i.e.,for any nonzero x=x'+x'' and Φ(x)=x=x'+x''with x',x'∈V'and x'',x''∈V'',we have g_(x)^(F1)(x'',x)=g_(x)^(F2)x(x'',x).As byproducts,we prove the following results.On the indicatrix(S_(F,g)),where F is a Minkowski norm induced by M_(t) and g is the Hessian metric,the foliation N_(t)=S_(F)∩R>_(0)M_(0) is isoparametric.Laugwitz Conjecture is valid for a Minkowski norm F induced by M_(t),i.e.,if its Hessian metric g is flat on R^(n)\{0}with n>2,then F is Euclidean.
作者 Ming Xu
出处 《Science China Mathematics》 SCIE CSCD 2022年第7期1485-1516,共32页 中国科学:数学(英文版)
基金 supported by Beijing Natural Science Foundation(Grant No.Z180004) National Natural Science Foundation of China(Grant Nos.11771331 and 11821101) Capacity Building for SciTech Innovation—Fundamental Scientific Research Funds(Grant No.KM201910028021)。
  • 相关文献

参考文献5

二级参考文献24

  • 1唐梓洲.ISOPARAMETRIC HYPERSURFACES WITH FOUR DISTINCT PRINCIPAL CURVATURES[J].Chinese Science Bulletin,1991,36(15):1237-1240. 被引量:5
  • 2Cecil T E. Isoparametric and Dupin hypersurfaces. SIGMA, 2008, 4: 28pp.
  • 3Cecil T E, Chi Q S, Jensen G R. Isoparametric hypersurfaces with four principal curvatures. Ann Math, 2007, 166:1-76.
  • 4Chi Q S. Isoparametric hypersurfaces with four principal curvatures, Ⅱ; Ⅲ. Nagoya Math J, 2011, 204: 1-18; J Diff Geom, 2013, 94: 469-504.
  • 5Christ U. Homogeneity of equifocal submanifolds. J Diff Geom, 2002, 62: 1-15.
  • 6Corlette K. Immersions with bounded curvature. Geometriae Dedicata, 1990, 33: 153-161.
  • 7Dominguez-Vazquez M. Isoparametric foliations on complex projective spaces. ArXiv:1204.3428v1, 2012.
  • 8Ferus D, Karcher H, Münzner H F. Cliffordalgebren und neue isoparametrische Hyperfl¨achen. Math Z, 1981, 177:479-502.
  • 9Ge J Q, Tang Z Z. Isoparametric functions and exotic spheres. J Reine Angew Math, 2013, 683: 161-180.
  • 10Ge J Q, Tang Z Z, Yan W J. A filtration for isoparametric hypersurfaces in Riemannian manifolds. J Math Soc Japan, in press.

共引文献8

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部