期刊文献+

一种面向电商网络的异常用户检测方法 被引量:1

Method for Abnormal Users Detection Oriented to E-commerce Network
下载PDF
导出
摘要 在电商网络中,异常用户往往表现出与正常用户截然不同的行为特征,检测异常用户并分析其行为模式对维护电商平台秩序具有十分重要的现实意义。通过分析异常用户的行为模式,将电商网络抽象为异质信息网络并转化为用户-设备二分图,然后在此基础上提出了一种面向电商网络的异常用户检测方法——自监督异常检测模型(Self-Supervised Anomaly Detection Model,S-SADM)。该方法具有自监督学习机制,采用自编码器编码获取用户节点表示,通过优化联合目标函数来完成反向传播,同时采用支持向量数据描述对用户节点表示进行异常检测。经过网络的自动迭代优化,不仅使用户节点表示具有监督信息,还获得了较稳定的检测结果。最后,在真实网络数据集和半合成网络数据集中对S-SADM进行实验,结果表明了该方法的有效性和优越性。 In the e-commerce network, abnormal users often show different behavioral characteristics from normal users.Detecting abnormal users and analyzing their behavior patterns is of great practical significance to maintaining the order of e-commerce platforms.By analyzing the behavior patterns of abnormal users, we abstract the e-commerce network into the heterogeneous information network, and convert it into a user-device bipartite graph.On this basis, we propose a method for detecting abnormal users oriented to e-commerce network--self-supervised anomaly detection model(S-SADM).The model has a self-supervised learning mechanism.It uses an autoencoder to encode the user-device bipartite graph to obtain user node representations.By optimizing the joint objective function, the model completes backpropagation, and uses support vector data descriptions to perform anomaly detection on user node representations.After the automatic iterative optimization of the network, the user node representation has supervised information, and we obtain relatively stable detection results.Finally, S-SADM is validated on 3 real network datasets and a semi-synthetic network dataset, and the experimental results demonstrate the effectiveness and superiority of the method.
作者 杜航原 李铎 王文剑 DU Hang-yuan;LI Duo;WANG Wen-jian(School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China;Key Laboratory of Computational Intelligence and Chinese Information Processing(Shanxi University),Ministry of Education,Taiyuan 030006,China)
出处 《计算机科学》 CSCD 北大核心 2022年第7期170-178,共9页 Computer Science
基金 国家自然科学基金(61902227,62076154,U1805263) 中央引导地方科技创新项目(YDZX20201400001224) 山西省自然科学基金(201901D211192) 山西省高校科技创新项目(2019L0039)。
关键词 异常检测 电商网络 异质信息网络 自监督学习 自编码器 支持向量数据描述 Anomaly detection E-commerce network Heterogeneous information network Self-supervised learning Autoenco-der Support vector data description
  • 相关文献

参考文献4

二级参考文献25

  • 1孙焕良,鲍玉斌,于戈,赵法信,王大玲.一种基于划分的孤立点检测算法[J].软件学报,2006,17(5):1009-1016. 被引量:16
  • 2杨盛春,贾林祥.神经网络内监督学习和无监督学习之比较[J].徐州建筑职业技术学院学报,2006,6(3):55-58. 被引量:5
  • 3李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 4薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 5Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying density-based local outliers[C]//Proc of ACM SIGMOD Conf.New York:ACM,2000:427-438.
  • 6Tang J,Chen Z,Fu A,et al.Enhancing effectiveness of outlier detections for low-density patterns[C]//Proc of Advances in Knowledge Discovery and Data Mining 6th Pacific Asia Conf.Berlin:Springer,2002:535-548.
  • 7Papadimitirou S,Kitagawa H,Gibbons P B,et al.LOCI:Fast outlier detection using the local correlation integral[C]//Proc of the 19th Int Conf on Data Engineering.Los Alamitos:IEEE Computer Society,2003:315-326.
  • 8Sanjay C,Pei Sun.SLOM:A new measure for local spatial outliers[J].Knowledge and Information Systems,2006,9(4):412-429.
  • 9Barnett V,Lewis T.Outliers in Statistical Data[M].New York:John Wiley and Sons,1994.
  • 10Johnson T,Kwok I,Ng R T.Fast computation of 2-dimensional depth contours[C]//Proc of the 4th Int Conf on Knowledge Discovery and Data Mining (KDD'98).New York:ACM,1998:224-228.

共引文献273

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部