期刊文献+

颗粒球形度对平行斜板混合纳米流体对流影响 被引量:1

Effects of Nanoparticle Sphericity on Mixed Convective Flow of Hybrid Nanofluids between Two Parallel Inclined Plates
原文传递
导出
摘要 以均匀热流引起的混合纳米流体在两平行斜板间的混合对流为研究对象,可以解析求解其速度场和温度场。纳米颗粒球形度和体积分数,以及摩擦系数和努塞尔数是影响混合纳米流体流动问题的重要因素,深入研究很有必要。计算表明,混合纳米流体可以显著提高传热性能,纳米颗粒球形度对混合纳米流体的流动影响显著,球形接触面积最大而具有最佳的传热性能。纳米颗粒的数量对改变传热特性至关重要,但当纳米流体达到饱和时,影响就可以忽略不计。 The mixed convection of hybrid nanofluids between two parallel inclined plates caused by the uniform heat flux is studied.Analytical solutions for both velocity and temperature fields are given.The effects of sphericity and volume fraction of nanoparticles on the behavior of hybrid nanofluids are studied in detail.The other important factors that could play important roles on the behavior of hybrid nanofluids are the distribution of friction coefficient and Nusselt number.Results show that the heat transfer performance can be enhanced dramatically as hybrid nanofluid is imposed and nanoparticles sphericity affects the hybrid nanofluid behaviour significantly.The spherical shape has the best heat transfer performance owing to its maximum contact area.The quantity of nanoparticles is also vital to alter the heat transfer characteristics,while this effect becomes neglected when the nanofluid reaches saturation.
作者 尤翔程 张瑞岗 陈小刚 崔继峰 YOU Xiangcheng;ZHANG Ruigang;CHEN Xiaogang;CUI Jifeng(College of Petroleum Engineering,China University of Petroleum-Beijing,Beijing 102249,China;College of Mathematical Sciences,Inner Mongolia University,Hohhot 010021,China;College of Sciences,Inner Mongolia University of Technology,Hohhot 010051,China)
出处 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2022年第2期135-140,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金(12002390,12062018,12102205,12172333) 内蒙古自然科学基金(2020MS01015) 内蒙古自治区高等学校青年科技英才支持计划资助项目(NJYT22075)。
关键词 纳米颗粒球形度 混合纳米流体 倾斜板 混合对流 nanoparticle sphericity hybrid nanofluids inclined plates mixed convection
  • 相关文献

参考文献3

二级参考文献32

  • 1Stone H A,Stroock A D,Ajdari A. Engineering flows in small devices:microfluidics toward a Lab-on-a-chipl-J]. Ann Rev Fluid Mech , 2004,36 : 381-411.
  • 2Erickson D, Li D. Integrated microfluidic devices[J]. Anal Chim Acta, 2004,507 ( 1 ) : 11-26.
  • 3Squires T M,Quake S R. Microfluidics: fluid physics at the nanoliter scale[J]. Rev Mod Phys, 2005,77(3):977- 1026.
  • 4Woodson H H,Melcher J R. Electromechanical Dynamics[M]. United States:John Wiley,1969.
  • 5Davidson P A. An introduction to Magnetohydrodynamics [M]. UK .. Cambridge University Press, 2001.
  • 6Chakraborty S, Paul D. Microchannel flow control through a combined electromagnetohydrodynamie transport [J]. J Phys D :Appl Phys, 2006,39 : 5364-5371.
  • 7Paul D, Chakraborty S. Wall effects in microchannel--based macromolecular separation under electromagneto- hydrodynamic influences [J]. J Appl Phys, 2007,102(7) :074921.
  • 8Sarkar S, Ganguly S. Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field[J]. Microfluid Nanofluid,2015,18(4):623-636.
  • 9Chakraborty R,Dey R, Chakraborty S. Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux[J]. Int J Heat Mass Tranffer, 2013,67 : 1151-1162.
  • 10Sobey I J. On flow through furrowed channel[J]. Journal of Fluid Mechanics, 1980,96(1) : 1-26.

共引文献6

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部