摘要
为了深入了解库伦摩擦对波箔气体轴承特性的影响,考虑了波箔片与平箔片间摩擦力以及波箔片与轴承座间摩擦力,通过有限元梁单元模型计算波箔轴承单个波拱的位移,采用能量耗散的方法对波箔轴承的刚度和阻尼特性进行了评价,分析了载荷基准值和载荷波动幅值以及摩擦因数对库伦阻尼耗散能量以及箔片刚度特性的影响规律。研究结果表明:随着载荷基准值和载荷波动幅值增大,库伦阻尼耗散能量明显增加,有助于提高轴承运行的稳定性;载荷波动幅值增大,波箔轴承刚度先迅速减小然后逐渐趋于稳定;载荷基准值变化对波箔刚度影响较小,波箔刚度基本不发生变化。载荷由最大值逐渐减小时,波箔拱顶部摩擦力刚开始时仍为滑动摩擦力。进入滞止阶段后,滑动摩擦力逐渐转变为静摩擦力且摩擦力方向逐渐由同向变为反向。箔片轴承设计过程中,应以支撑刚度或阻尼耗散为目标,选择最优的摩擦因数。
In this paper,the friction between the bump foil and the flat foil and between the bump foil and the bearing housing is taken into account to evaluate the effects of coulomb friction on bump foil gas bearing.The displacement of a single bump is calculated using the finite element beam model.Thereafter,the stiffness and damping characteristics of the bearing are evaluated through energy dissipation method.The effects of load reference value,load fluctuation amplitude and friction coefficient on energy dissipation and foil stiffness are analyzed.The results indicate that the energy dissipation increases as the reference value and fluctuation amplitude increase,which is conducive to the operating stability.The stiffness grows rapidly and then asymptoticly stabilizes as the amplitude increases.The stiffness basically does not change with the reference value.When the load decreases from the maximum value,the friction at the bump top still remains as sliding friction at the beginning.After entering the hysterias condition,the sliding friction gradually turns into static friction,and the direction of friction changes from the same direction to the opposite direction.In the bearing design process,the optimal friction coefficient should be selected properly based on the principle in favor of support stiffness or energy dissipation.
作者
赵琪
任雄豪
侯予
陈双涛
赖天伟
ZHAO Qi;REN Xionghao;HOU Yu;CHEN Shuangtao;LAI Tianwei(School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2022年第7期177-183,共7页
Journal of Xi'an Jiaotong University
基金
国家重点研发计划资助项目(2019YFB1504600)
陕西高校青年创新团队资助项目。
关键词
气体轴承
波箔
库伦阻尼
库伦摩擦
gas bearing
bump foil
Coulomb damping
Coulomb friction