期刊文献+

基于时序动态回归的超短期光伏发电功率预测方法 被引量:20

Very Short-term Photovoltaic Power Forecasting Method Based on Time Series Dynamic Regression
下载PDF
导出
摘要 光伏发电功率预测对于电力系统安全可靠运行以及提高光伏发电产业经济效益具有重要意义。提出一种基于时序动态回归的超短期光伏发电功率预测方法,仅需要历史光伏发电功率数据与数值天气预报作为输入。首先建立光伏发电功率与地表太阳辐射累计值的回归模型,再建立ARIMA模型预测回归残差序列,最后引入傅里叶谐波序列刻画日季节性。根据线性形式与对数形式的回归公式提出两种预测模型,综合二者形成最终的混合预测方法。算例结果表明,与一般时序模型相比,该方法在超短期预测方面预测精度更高。 Photovoltaic(PV)power forecasting is of great significance for power system reliability and economic benefits of PV industry.A very short-term PV power forecasting method based on time-series dynamic regression model is proposed.Only historical PV power output and numerical weather prediction(NWP)are needed as input data.A regression model is firstly established between PV power output and surface solar radiation(SSRD).ARIMA model is used to forecast the regression residual term.Finally,Fourier harmonic time-series is introduced to characterize the daily seasonality of PV power output.Two concrete forecasting models are proposed respectively based on linear regression and logarithmic regression,which are combined to form a hybrid forecasting method.The results of our experiment show that compared with traditional time-series models,the proposed method is of higher accuracy for very short-term forecasting.
作者 解振学 林帆 王若谷 张耀 高欣 王建学 XIE Zhenxue;LIN Fan;WANG Ruogu;ZHANG Yao;GAO Xin;WANG Jianxue(State Grid Shaanxi Electric Power Materials Company,Xi’an 710054,China;Shaanxi Province Key Laboratory of Smart Grid,Xi’an Jiaotong University,Xi’an 710049,China;State Grid Shaanxi Electric Power Research Institute,Xi’an 710100,China)
出处 《智慧电力》 北大核心 2022年第7期45-51,共7页 Smart Power
基金 国家自然科学基金资助项目(51907151) 陕西省重点研发计划重点产业创新链项目(2017ZDCXL-GY-02-03) 国网陕西省电力公司科技项目(B626KY190005)。
关键词 超短期预测 光伏发电预测 时序动态回归 ARIMA 谐波序列 very short-term forecasting photovoltaic power forecasting time series dynamic regression ARIMA harmonic time series
  • 相关文献

参考文献9

二级参考文献173

  • 1祝暄懿,姚李孝.基于相似日和小波神经网络的光伏短期功率预测[J].电网与清洁能源,2019,35(3):75-78. 被引量:18
  • 2董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 3European Photovoltaic Industry Association. Global market outlook for photovoltaics 2014, 2018[R]. EPIA Report, 2014.
  • 4PVPS lEA. 2014 snapshot of global PV markets[R]. Report lEA PVPS T1-26, 2015.
  • 52014年光伏产业发展情况[EB/OL].[2015-02-15].http://www.nea.gov.cn/201502/15/c_133997454.htm.
  • 6GLASSLEY W, KLEISSL J, SHIU H, et al. Current state of the art in solar forecasting, final report: Appendix A California renewable energy forecasting, resource data and mapping[R]. California Institute for Energy and Environment, 2010.
  • 7PELLAND S, REMUND J, KLEISSL J, et al. Photovoltaic and solar forecasting: state of the art[R], lEA PVPS Task, 2013.
  • 8LONG H, ZHANG Z, SU Y. Analysis of daily solar power prediction with data-driven approaches [ J ]. Applied Energy, 2014, 126:29-37.
  • 9MARQUEZ R, COIMBRA C F M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database [ J ]. Solar Energy, 2011, 85(5) : 746-756.
  • 10ALMONACID F, PEREZ-HIGUERAS P J, FERNANDEZ E F, et al. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator[J]. Energy Conversion and Management, 2014 (85) : 389-398.

共引文献397

同被引文献236

引证文献20

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部