期刊文献+

Sparse and Low-Rank Covariance Matrix Estimation 被引量:2

原文传递
导出
摘要 This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations.
出处 《Journal of the Operations Research Society of China》 EI CSCD 2015年第2期231-250,共20页 中国运筹学会会刊(英文)
基金 The work was supported in part by the National Natural Science Foundation of China(Nos.11431002,11171018,71271021,11301022).
  • 相关文献

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部