期刊文献+

基于空谱分组卷积密集网络的高光谱图像分类 被引量:2

Hyperspectral image classification based on spatial-spectral group convolution dense network
下载PDF
导出
摘要 针对高光谱图像分类在特征提取过程中高分辨率信息丢失,导致分类精度下降的问题,提出一种基于空谱分组卷积密集网络的高光谱图像分类方法。设计光谱-空间三维分组卷积密集模块,对光谱与空间特征进行分步提取,利用分组卷积构造的密集网络能减少数据固有信息冗余,使高分辨率的特征进行重用,避免细节特征信息丢失;设计光谱残差注意力模块,该模块通过结合空-谱特征计算注意力权重,对提取到的光谱特征进行权重重分配,对光谱信息富有的区域进行增强。实验结果表明,相比于若干最优的深度网络方法,所提高光谱图像分类方法具有更好的分类性能。 Aiming at the issues of high-resolution information loss in the process of feature extraction in hyperspectral image classification,which leads to the decline of classification accuracy,a spatial-spectral group-convolution dense network was proposed.The spatial-spectral 3D group-convolution densenet module was exploited to extract the spectral and spatial features step by step.The information redundancy of hyperspectral data was reduced in the feature extraction process,the high-resolution features were reused through dense connection when using the dense network constructed by group-convolution,avoiding the loss of detailed feature information.The spectral residual attention module was designed and employed to calculate the attention weight combined with the spatial-spectral information,and to redistribute the weight of the extracted spectral features to enhance the area with rich spectral information.Experimental results show that the proposed network performs better than the state-of-the-art neural network-based classification methods.
作者 欧阳宁 李祖锋 林乐平 OUYANG Ning;LI Zu-feng;LIN Le-ping(Key Laboratory of Cognitive Radio and Information Processing of Ministry of Education,School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《计算机工程与设计》 北大核心 2022年第7期2031-2039,共9页 Computer Engineering and Design
基金 国家自然科学基金项目(62001133、61661017、61362021) 广西科技基地和人才专项基金项目(桂科AD19110060) 广西自然科学基金项目(2017GXNSFBA198212) 广西无线宽带通信与信号处理重点实验室基金项目(GXKL06200114)。
关键词 高光谱图像分类 三维分组卷积 密集网络 光谱残差注意力模块 空-谱特征 hyperspectral image classification 3D group-convolution dense network spectral residual attention module spatial-spectral features
  • 相关文献

参考文献2

共引文献12

同被引文献37

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部