期刊文献+

近亲结点图编辑的Self-Training算法 被引量:1

Self-Training Algorithm with Editing Direct Relative Node Graph
下载PDF
导出
摘要 Self-Training算法的性能很大程度上取决于高置信度样本的识别准确度。受DPC算法启发,利用密度峰值定义样本间的原型关系,并构造出近亲结点图这一新型数据结构。在此基础上,提出了一种近亲结点图编辑的Self Training算法(self-training algorithm with editing direct relative node graph-DRNG)。DRNG采用假设检验的方法选择高置信度样本,将其加入有标签样本集进行迭代训练。因误分的高密度样本点对Self-Training算法的分类性能影响较大,所以,DRNG综合考虑距离和密度两个方面定义了近亲结点图中割边的非对称权重,增大了高密度点的割边权重,使其落在拒绝域外的概率增加,减小了因其误分类而产生的风险。为了验证DRNG的性能,在8个基准数据集上与类似算法进行对比实验,实验结果验证了DRNG的有效性。 The performance of Self-Training algorithm largely depends on recognition accuracy of high-confidence sam-ples.Inspired by the DPC algorithm,it defines the prototype relationship between samples by density peak and constructs a new data structure named direct relative node graph.On this basis,a novel self-training algorithm with editing direct rel-ative node graph(DRNG)is proposed.DRNG employs a hypothesis test method to select high-confidence samples,and then adds them to the labeled sample set for iterative training.Because misclassified high-density sample points have a greater impact on the classification performance of the Self-Training algorithm,DRNG considers both distance and density to define the asymmetric weight of the cut edge in the direct relative node graph,which increases the cut edge weight of high-density points and the probability of high-density points falling outside the rejection domain.As a consequence,DRNG reduces the risk of high-density points being misclassified.To verify the performance of the DRNG,comparative experiments are carried out with 4 state-of-the-art algorithms on 8 benchmark datasets.The experimental results verify the effectiveness of the DRNG.
作者 刘学文 王继奎 杨正国 易纪海 李冰 聂飞平 LIU Xuewen;WANG Jikui;YANG Zhengguo;YI Jihai;LI Bing;NIE Feiping(School of Information Engineering,Lanzhou University of Finance and Economics,Lanzhou 730020,China;School of Computer Science,Center for Optical Imagery Analysis and Learning(OPTIMAL),Northwestern Polytechnical University,Xi’an 710072,China)
出处 《计算机工程与应用》 CSCD 北大核心 2022年第14期144-152,共9页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(61772427) 国家自然科学基金青年基金项目(11801345) 甘肃省高等学校创新能力提升项目(2021B-145) 甘肃省自然科学基金(21JR11RA132) 兰州财经大学科研项目(Lzufe2020B-011)。
关键词 近亲结点图 半监督分类 密度峰值 自训练 direct relative node graph semi-supervised classification density peak self-training
  • 相关文献

参考文献14

二级参考文献91

  • 1任洪娥,霍满冬.基于PSO优化的SVM预测应用研究[J].计算机应用研究,2009,26(3):867-869. 被引量:32
  • 2赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 3陈慧鹏,杨亮亮,李鸿,周云飞.模糊集识别法在纸币清分中的应用研究[J].机床与液压,2005,33(6):167-169. 被引量:2
  • 4吴青,刘三阳,郑巍.基于乘性规则的支持向量机[J].智能系统学报,2007,2(2):74-77. 被引量:3
  • 5边肇棋,张学工.模式识别[M].北京:清华大学出版社,2000.
  • 6Lerner V.Pattern recognition using generalized portrait method[J].Automation and Remote Control,1963,24:774-780.
  • 7Gunn S R.Support vector machines for classification and regression[D].University of Southampton,1997.
  • 8Nigam K,Ghani R.Analyzing the effectiveness and applicability of co-training[C]//Proceedings of the 2000 ACM CIKM,McLean,US,2000:86-93.
  • 9Zhou Z H,Wu J,Tang W.Ensembling neural networks:Many could be better than all[J].Artificial Intelligence,2002,137(1/2):239-263.
  • 10Tsang I W,Kwok J T.Large-scale sparsified manifold regularization[C]//Proceedings of the Conference on The Neural Information Processing Systems,Vanconver,Canada,2006.

共引文献92

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部