摘要
Glycosite-specific antibody-drug conjugatess(gsADCs), harnessing Asn297 N-glycan of IgG Fc as the conjugation site for drug payloads, usually require multi-step glycoengineering with two or more enzymes, which limits the substrate diversification and complicates the preparation process.Herein, we report a series of novel disaccharide-based substrates, which reprogram the IgG glycoengineering to one-step synthesis of gsADCs, catalyzed by an endo-N-acetylglucosaminidase(ENGase) of Endo-S2. IgG glycoengineering via ENGases usually has two steps: deglycosylation by wild-type(WT) ENGases and transglycosylation by mutated ENGases. But in the current method, we have found that disaccharide LacNAc oxazoline can be efficiently assembled onto IgG by WT Endo-S2 without hydrolysis of the product, which enables the one-step glycoengineering directly from native antibodies.Further studies on substrate specificity revealed that this approach has excellent tolerance on various modification of 6-Gal motif of LacNAc. Within 1 h, one-step synthesis of gsADC was achieved using the LacNAc-toxin substrates including structures free of bioorthogonal groups. These gsADCs demonstrated good homogeneity, buffer stability, in vitro and in vivo anti-tumor activity. This work presents a novel strategy using LacNAc-based substrates to reprogram the multi-step IgG glycoengineering to a one-step manner for highly efficient synthesis of gsADCs.
基金
supported by the National Natural Science Foundation of China(NSFC,No.,2187116 and 82003574)
Shanghai Municipal Science and Technology Major Project,the Shanghai Sail Program(No.19YF1457100)
the Special Research Assistant Program(Chinese Academy of Sciences,CAS),Natural Science Foundation of Shandong Province(ZR2017BC062)。