摘要
目前,电流源型SWISS整流器普遍存在硬开关与开关应力大等问题,严重影响了整流器的功率密度。为了改善高功率应用场合中的效率,该文在原有的隔离型双移相全桥SWISS整流器拓扑的基础上,针对该拓扑存在的滞后桥臂软开关范围窄的问题,提出一种带有中点电容钳位的改进型基于双移相全桥的SWISS整流器。传统全桥的滞后桥臂软开关严重依赖漏感存储能量,只能在较大负载时实现软开关,而该文提出的拓扑通过独立设计超前桥臂和滞后桥臂的变压器,使得在负载较轻时可以同时利用变压器一次侧漏感与一次侧励磁电感共同辅助滞后管寄生电容充放电,实现滞后管的软开关,而不增加过多的额外损耗。该文具体分析滞后管开关的死区时间内,电路的详细工作状态,建立各项电路参数与滞后管软开关实现之间的关系。最后通过仿真模型与样机模型验证了理论分析的正确性以及改进型拓扑的可行性。
Nowadays,current SWISS rectifiers commonly have issues such as hard switching and large switching stress,which seriously affect the power density.In order to improve the efficiency in high power applications and to solve the problem that lag bridge has narrow soft switching range,this paper proposed an improved topology with mid-point clamp capacitors based on the original isolated dual-phase full-bridge SWISS rectifier.Traditional full-bridge converter’s lag bridge soft switching almost relied on leakage inductance,furthermore,only large loads had soft switching condition.The topology proposed in this paper not only can independently design the transformer of the leading bridge and the lagging bridge,but also can use both the leakage inductance and the magnetizing inductance of the transformer’s primary side to assist the lagging switches’parasitic capacitance charging and discharging,which meet the soft switching condition on light loads without adding much extra loss.This paper described the detailed working states of the circuit during the dead time of the lagging switch,and established the relationship between the circuit and the lagging soft switching.Finally,the correctness of the theoretical analysis and the feasibility of the improved topology were verified by simulation models and prototype models.
作者
李周洋
谢少军
张斌锋
赵鹏程
Li Zhouyang;Xie Shaojun;Zhang Binfeng;Zhao Pengcheng(College of Automation Engineering Nanjing University of Aeronautics and Astronautics,Nanjing 211100 China)
出处
《电工技术学报》
EI
CSCD
北大核心
2022年第S01期198-206,共9页
Transactions of China Electrotechnical Society
基金
国家自然科学基金资助项目(51877104)。
关键词
SWISS
整流器
滞后管
励磁电感
软开关
SWISS rectifier
lagging switch
magnetizing inductance
soft switching