期刊文献+

手写多字体藏文古籍文本检测方法研究 被引量:5

Study on a Text Detection Method of Tibetan Ancient Handwritten Books with Multi-font
下载PDF
导出
摘要 为更好利用和挖掘藏文古籍文献内容,文章首先研究了手写藏文古籍文本的特点,按照其字形大小构建了3种数据集;其次采用PSENet、PixelLink、PANNet 3种基于分割的深度学习文本检测算法对多种字体的手写藏文古籍文本进行了检测;再评估了3种算法对手写藏文古籍文本的检测性能,分析了3种算法检测多种手写藏文古籍字体和字形大小的效果,指出了在同库实验中PSENet和PANNet性能优于Pixel⁃Link,跨库实验中PixelLink性能优于PSENet和PANNet。 To sufficiently use and fully explore the content of Tibetan ancient handwritten books,Tibetan ancient handwritten books must be digitized.For digitaization of Tibetan ancient handwritten books,the first key step is to detect Tibetan text from the books correctly.And hence,in this paper firstly the characteristics of Tibetan an⁃cient handwritten books is studied,and three datasets is constructed according to the font size of Tibetan ancient handwritten books.Secondly,three algorithms i.e.PSENet,PixelLink and PANNet,which are based on deep learning text detection algorithms,are applied to detect the text of Tibetan ancient handwritten books with multi⁃ple fonts,and the evaluation of performance of the three algorithms is carried out.Moreover,the performance of the three algorithms in detecting various fonts and font size of Tibetan ancient handwritten books are compared.Our results show that the performance of PSENet and PANNet are better than that of PixelLink in detecting Tibet⁃an ancient handwritten books with three font sizes,while the performance of PixelLink is better than PSENet and PANNet in the cross-database experiment.
作者 芷香香 高定国 ZHI Xiangxiang;GAO Dingguo(College of Information Science and Technology,Tibet University,Lhasa 850000,China)
出处 《高原科学研究》 CSCD 2022年第2期89-101,共13页 Plateau Science Research
基金 国家自然科学基金项目(62166038) 西藏大学研究生高水平人才培养计划项目(00060701).
关键词 藏文古籍 多字体 文本检测 PSENet PixelLink PANNet Tibetan ancient books multifont text detection PSENet PixelLink PANNet
  • 相关文献

参考文献8

二级参考文献52

  • 1王华,丁晓青.一种多字体印刷藏文字符的归一化方法[J].计算机应用研究,2004,21(6):41-43. 被引量:10
  • 2郑肇葆,叶志伟.基于蚁群行为仿真的影像纹理分类[J].武汉大学学报(信息科学版),2004,29(8):669-673. 被引量:10
  • 3韩彦芳,施鹏飞.基于蚁群算法的图像分割方法[J].计算机工程与应用,2004,40(18):5-7. 被引量:38
  • 4王华,丁晓青.一种多字体印刷藏文字符识别方法[J].计算机工程,2004,30(13):18-20. 被引量:10
  • 5Der - Sheng Lin, Jin - Zhang Leou, A genetic algorithm approach to Chinese Handwriting Normalization, IEEE Transaction on Systems, Man and cybernetics -Part B: CYBERNETICS, 1997,27(6) :999 - 1006.
  • 6Gokcen I, Pineda I H, Yuan X, Image Segmentation Using Ant Colony System, The 5th Ibero American Symposium on Pattern Recognition, Lisben, 2000.
  • 7Zhuang X, Edge feature extraction in digital images with the ant colony system, Proceedings of the 2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2004.133 - 136.
  • 8Zheng H, Wong A, Nahavandi S, Hybrid ant colony algorithm for texture classification. Proceedings of the 2003 Congress on Evolutionary Computation, 2003,4 (4) :2648 - 2652.
  • 9毛建军.古籍数字化的概念与内涵[J].图书馆理论与实践,2007(4):82-84. 被引量:75
  • 10Kato N, Suzuki M, Omachi S, et al. A handwritten character recognition system using directional element feature and asymmetric mahalanobis distance[J]. IEEE Trans on PAMI, 1999, 21(3):258 -262.

共引文献48

同被引文献25

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部