期刊文献+

Optimization of synchronized frequency and voltage control for a distributed generation system using the Black Widow Optimization algorithm 被引量:1

原文传递
导出
摘要 A distributed generation network could be a hybrid power system that includes wind-diesel power generation based on induction generators(IGs)and synchronous generators(SGs).The main advantage of these systems is the possibility of using renewable energy in their structures.The most important challenge is to design the voltage-control loop with the frequency-control loop to obtain optimal responses for voltage and frequency deviations.In this work,the voltage-control loop is designed by an automatic voltage regulator.A linear model of the hybrid system has also been developed with coordinated voltage and frequency control.Dynamic frequency response and voltage deviations are compared for different load disturbances and different reactive loads.The gains of the SG and the static volt-ampere reactive compensator(SVC)controllers in the IG terminal are calculated using the Black Widow Optimization(BWO)algorithm to insure low frequency and voltage deviations.The BWO optimization algorithm is one of the newest and most powerful optimization methods to have been introduced so far.The results showed that the BWO algorithm has a good speed in solving the proposed objective function.A 22%improvement in time adjustment was observed in the use of an optimal SVC.Also,an 18%improvement was observed in the transitory values.
出处 《Clean Energy》 EI 2022年第1期105-118,共14页 清洁能源(英文)
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部