期刊文献+

DEM investigation on conveying of non-spherical particles in a screw conveyor 被引量:6

原文传递
导出
摘要 Screw conveyors are extensively used in modern industry such as metallurgy,architecture and pharmaceutical due to their high-efficiency in the transportation of granular materials.And substantial efforts have been devoted to the study of the screw conveyors.Numerical method is an effective way to study screw conveyor.However,previous studies have mainly focused in the regime of spherical particles while the in-depth investigations for non-spherical particles that should be the most encountered in practical applications are still limited.In view of the above situations,discrete element method(DEM),which has been widely accepted in simulating the discrete systems,is utilized to investigate the conveying process of non-spherical particles in a horizontal screw conveyor,with particles being modeled by super-ellipsoids.In addition,a wear model called SIEM(Shear Impact Energy Model)is incorporated into DEM to predict the wear of screw conveyor.The DEM simulation results demonstrate that the particle shape is influential for the flow behaviors of particles and the wear of conveyor.The conveying performance evaluated quantitatively of both mass flow rate and power consumption is subsequently obtained to investigate the effect of sphericity of particle with different operation parameters.Moreover,particle collision frequency and collision energy consumption are acquired to investigate the possible particle breakage between particles and screw blade.The comparisons between particle-particle collision and particle-wall collision reveal that particles with large shape index have more possibility to be damaged in particle-wall impingement.
出处 《Particuology》 SCIE EI CAS CSCD 2022年第6期17-31,共15页 颗粒学报(英文版)
基金 This research was financially supported by the National Key Research and Development Program of China(grant No.2019YFC1805605) the National Natural Science Foundation of China(grant No.22078283)。
  • 相关文献

参考文献3

二级参考文献5

共引文献17

同被引文献45

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部