摘要
研究了二维带状区域中无磁扩散不可压缩磁流体动力学系统的初边值问题.利用其在平衡态附近扰动系统线性问题的显式解,建立了在平衡态(0,e_(2))附近线性化系统在速度上的Navier型边界条件下强解的线性衰减.此外,利用各向异性Sobolev技术得到了系统整体强解的H^(3)-正则性.
We investigate in this paper the initial boundary value problem of the twodimensional incompressible magnetohydrodynamic system without magnetic diffusion in a strip domain. Making use of the explicit solution to the linear problem of perturbations system around the equilibrium, we established the linear decay of the strong solutions to the linearized system around the equilibrium state(0, e_(2)) with the Navier-type boundary condition on the velocity. Moreover, the H^(3)-regularity of the global strong solutions to the system is obtained by using anisotropic Sobolev technique.
作者
桂贵龙
李燕灿
李自来
Gui Guilong;Li Yancan;Li Zilai(School of Mathematics,Northwest University,Xi'an 710127,China;School of Mathematics and Information Science,Henan Polytechnic University,Jiaozuo 454003,China)
出处
《纯粹数学与应用数学》
2022年第2期153-190,共38页
Pure and Applied Mathematics
基金
国家自然科学基金(11571279,12126359,11931013,12126316)
河南理工大学创新研究团队(T2022-7)。