期刊文献+

基于多普勒调制时移Laplace小波的列车轴承故障声信号瞬态成分快速提取方法 被引量:3

A fast transient component extraction method of train bearing fault acoustic signal based on Doppler modulated time-shifting Laplace wavelet
原文传递
导出
摘要 提出了一种基于多普勒调制时移Laplace小波的列车轴承故障声信号瞬态成分快速提取方法,包含“先粗后精”两个步骤:1)瞬态参数粗估计,利用现有的多普勒调制等周期Laplace小波模型粗略估计瞬态参数;2)参数精确估计与瞬态成分提取,构造多普勒调制时移Laplace小波模型,使用逐个匹配的策略进行瞬态参数精确估计和瞬态成分的提取。所提方法具有以下优点:1)更高的精度,使用的多普勒调制时移Laplace小波模型在时域内仅有一个时延参数定位的小波成分,能够解决周期瞬态模型在提取伪周期瞬态成分时匹配误差问题;2)高效率,由于使用了周期瞬态模型粗略估计瞬态成分参数,因此在瞬态成分逐个提取的过程中小波参数的范围可以设的很小,实验对比分析结果显示,与直接提取方式相比效率提高了71.46%。本研究提供了一种从含有多普勒畸变的列车轴承故障声信号中精确地、高效率地提取瞬态成分的方法。 A fast transient component extraction method of the train bearing fault acoustic signal is proposed,which is based on Doppler modulated time-shifting Laplace wavelet.It includes two steps that are rough estimation first and precise identification.The first is rough estimation of transient parameters.The existing periodic Doppler modulated Laplace wavelet model is used to roughly estimate the transient parameters.The second is precise parameter estimation and transient component extraction.A Doppler modulated time-shifting Laplace wavelet model is formulated,which uses one-by-one matching strategy to accurately estimate the transient parameters and extract the transient components.The proposed method has two advantages,which are high accuracy and high efficiency.For high accuracy,the Doppler modulation time-shifted Laplace wavelet model has only one wavelet component for positioning the delay parameter in the time domain,which can solve the matching error problem caused by the pseudo-period of the transient component.For high efficiency,because the periodic transient model is used to roughly estimate the parameters of the transient components,the range of the wavelet parameters can be set very small in the process of extracting the transient components one by one.The experiment comparison and analysis results show that the efficiency is increased by 71.46%,compared with the direct extraction method.This study provides a method to accurately and efficiently extract transient components from train bearing fault acoustic signals containing Doppler distortion.
作者 刘方 翟涛涛 侯超强 滕繁荣 刘永斌 Liu Fang;Zhai Taotao;Hou Chaoqiang;Teng Fanrong;Liu Yongbin(School of Electrical Engineering and Automation,Anhui University,Hefei 230601,China;National Engineering Laboratory of Energy-Saving Motor&Control Technology,Anhui University,Hefei 230601,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第3期40-48,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51875001,52075001)项目资助。
关键词 列车轴承 故障诊断 瞬态分析 多普勒效应 Laplace小波 train bearing fault diagnosis transient analysis Doppler effect Laplace wavelet
  • 相关文献

参考文献8

二级参考文献52

  • 1潘阳,陈安华,蒋玲莉,李学军.基于自适应共振解调技术的滚动轴承故障诊断[J].机械科学与技术,2015,34(2):238-241. 被引量:7
  • 2王平,廖明夫.滚动轴承故障诊断的自适应共振解调技术[J].航空动力学报,2005,20(4):606-612. 被引量:57
  • 3杜海平 张亮 史习智.柴油发动机缸盖振动信号时域识别方法研究[J].振动工程学报,2000,13:152-155.
  • 4孟庆丰.基于应用内涵研究故障特征提取技术[J].振动工程学报,2000,13:97-101.
  • 5Mallat S G,Zhang Z F.Matching pursuit with time-frequency dictionaries[J] .IEEE Trans.On Signal Processing,1993,41 (12):3397-3415.
  • 6McClure M R,Carin L.Matching pursuits with a wave-based dictionary[J] .IEEE Transactions on Signal Processing,1997,45(12):2912-2927.
  • 7Aharon M,Elad M,Bruckstein A.K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J] .IEEE Transactions on Signal Processing,2006,54 (11):4311-4322.
  • 8Neff R and Zakhor A.Matching pursuit video-part Ⅰ:dictionary approximation[J] .IEEE Trans.on Circuits and Systems for Video Technology,2002,12(1):13-26.
  • 9Coifman R R,Wickerhauser M V.Entropy-based algorithms for best-basis selection[J] .IEEE Trans Inform.Theory,1992,38:713-718.
  • 10曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD降噪方法[J].振动与冲击,2009,28(9):33-38. 被引量:67

共引文献151

同被引文献29

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部