期刊文献+

多策略改进麻雀算法与BiLSTM的变压器故障诊断研究 被引量:49

Research on transformer fault diagnosis based on the improved multi-strategy sparrow algorithm and BiLSTM
原文传递
导出
摘要 针对变压器故障诊断精度低的问题,提出了一种多策略改进麻雀算法(MISSA)与双向长短时记忆网络(BiLSTM)的变压器故障诊断模型。基于油中溶解气体分析(DGA)技术,结合无编码比值方法提取变压器9维故障特征作为模型输入进行网络训练,输出层采用Softmax函数得到故障诊断类型;采用Logistic混沌映射、均匀分布的动态自适应权重以及动态拉普拉斯算子来对麻雀搜索算法(SSA)进行改进;在初始解集内,利用MISSA对目标超参数进行寻优,使变压器故障诊断精度最优,并结合核主成分分析(KPCA)对故障特征指标降维,加快模型收敛速度。结果表明,提出的模型诊断精度为94%与PSO-BiLSTM、GWO-BiLSTM和SSA-BiLSTM故障诊断模型相比,分别提高了11.33%、8.67%、6%,验证了本文方法能够有效地提高变压器的故障诊断性能。 To enhance the low precision of transformer fault diagnosis, a model based on multi-strategy improved sparrow algorithm(MISSA) and bidirectional long short-term memory network(BiLSTM) is proposed. Based on dissolved gas analysis(DGA) technology in oil, the uncoded ratio method is used to extract 9-dimensional fault features of the transformer as the input of the model for network training. The Softmax function is used to obtain fault diagnosis types in the output layer. The sparrow search algorithm(SSA) is improved by logistic chaos mapping, uniformly distributed dynamic adaptive weights and dynamic Laplacian operator. In the initial solution set, the multi-strategy improved Sparrow algorithm(MISSA) is used to optimize the target hyperparameters. In this way, the transformer fault diagnosis accuracy is optimized, and the kernel principal component analysis(KPCA) is used to reduce the dimension of fault feature indexes, and the convergence speed of the model is accelerated. Compared with PSO-BiLSTM, GWA-BiLSTM and SSA-BILSTM fault diagnosis models, the diagnostic accuracy of the proposed model is 94%, which is 11.33%, 8.67% and 6% higher than those of PSO-BiLSTM, GWA-BiLSTM and SSA-BiLSTM fault diagnosis models, respectively. It is verified that the proposed method can effectively improve the performance of transformer fault diagnosis.
作者 王雨虹 王志中 付华 王淑月 王留洋 Wang Yuhong;Wang Zhizhong;Fu Hua;Wang Shuyue;Wang Liuyang(Faculty of Electrical and Control Engineering,Liaoning Technical University,Liaoning 125105,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第3期87-97,共11页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51974151,71771111) 辽宁省高等学校国(境)外培养项目(2019GJWZD002) 辽宁省高等学校创新团队项目(LT2019007) 辽宁省教育厅科技项目(LJ2019QL015) 辽宁省高等学校基本科研项目(LJKZ0352)资助。
关键词 变压器 油中溶解气体 麻雀算法 深度学习 核主成分分析 transformer dissolved gas in oil sparrow algorithm deep learning kernel principal component analysis
  • 相关文献

参考文献14

二级参考文献171

共引文献495

同被引文献548

引证文献49

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部