期刊文献+

基于改进GMM-CNN-GRU混合的非侵入式负荷监测方法研究 被引量:16

Non-invasive load monitoring based on an improved GMM-CNN-GRU combination
下载PDF
导出
摘要 为挖掘用户侧节能减排潜力,对用户用电行为进行精细化分析和管理,提升电能利用效率,提出了一种基于高斯混合模型聚类和深度神经网络相结合的非侵入式负荷监测方法。首先,针对同一电器常出现功率相近但运行状态不一致问题,利用高斯混合模型聚类算法中“软分类”和类簇灵活的优势,对负荷工作状态进行精细分类,形成负荷用电设备实际运行情况的负荷状态特征库。其次,针对常见的应用于非侵入式负荷监测模型的深度神经网络在多标签分类时存在识别精度低等问题,提出卷积神经网络与门控循环单元混合的深度神经网络模型。最后,综合考虑外部环境数据对家庭用户用能习惯的影响,在AMPds2数据集上开展验证分析,并与其他模型进行对比。结果表明,所提的非侵入式负荷监测模型具有较高的准确性。 A non-intrusive load monitoring method based on Gaussian mixture model clustering combined with a deep neural network is proposed to explore the potential of energy saving and emission reduction at the customer side.It also fine-tunes the analysis and management of customer electricity consumption behavior,and improves the efficiency of electricity use.First,we tackle the problem that the same electrical appliance often has similar power but inconsistent operating status.In order to classify the load working status in fine manner,the advantages of"soft classification"and flexible clustering in the Gaussian mixture model clustering algorithm can be used to form a load status feature library that conforms to the actual operating conditions of electrical equipment.Secondly,note that in the common deep neural networks applied to non-invasive load monitoring models,there are problems such as low recognition accuracy in multi-label classification.Thus a deep neural network model with a mixture of convolutional neural networks and gated recurrent units is proposed.Finally,the validation analysis is carried out on the AMPds2 dataset by considering the influence of external environmental data on the energy consumption habits of household users,and the results are compared with other models.The results show that the proposed non-invasive load monitoring model has high accuracy.
作者 杨秀 李安 孙改平 田英杰 刘方 潘瑞媛 吴吉海 YANG Xiu;LI An;SUN Gaiping;TIAN Yingjie;LIU Fang;PAN Ruiyuan;WU Jihai(School of Electric Power Engineering,Shanghai University of Electric Power,Shanghai 200090,China;East China Electric Power Research Institute,Shanghai 200437,China)
出处 《电力系统保护与控制》 EI CSCD 北大核心 2022年第14期65-75,共11页 Power System Protection and Control
基金 国家自然科学基金项目资助(61872230) 上海电力人工智能工程技术研究中心研究项目资助(19D72252800)。
关键词 非侵入式负荷监测与分解 高斯混合模型聚类 卷积神经网络 门控循环单元 深度学习 non-invasive load monitoring and decomposition Gaussian mixture model clustering convolutional neural networks gated recurrent unit deep learning
  • 相关文献

参考文献19

二级参考文献215

共引文献628

同被引文献190

引证文献16

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部