摘要
采用搅拌摩擦焊(FSW)和熔化极惰性气体保护焊(MIG)相结合的方法焊接制造的铝合金筒体(5A06H112,内径Φ2110_(+0.1)^(+0.3)×12_(0)^(+4)mm),由20 mm厚壁板通过辊弯至内径Φ2 102 mm、筒体本体FSW拼焊、筒体大量附件MIG焊接后筒体内径变形大变形不规律,导致筒体焊后去除焊接余量内径精加工至内径Φ2 110 mm后筒体剩余壁厚不满足设计规定的120+4mm,而筒体精加工后壁厚过大将使其超重不满足系统对质量的要求,壁厚小于12 mm无法满足结构强度要求,壁厚的控制对整个系统的安全至关重要。对FSW焊后变形规律进行分析,通过调整单侧焊接厚度、改变焊接顺序、优化工装方案等措施可将焊后单侧内凹变形从最大10 mm降至2 mm以内;对附件MIG焊后变形规律进行分析,通过优化装焊顺序、优化工装方案及精加工工艺方案等措施,最终使筒体机加工后壁厚合格率由原来的23%提高至100%。
The aluminum alloy shell(5A06 H112,inner diameterΦ2110_(+0.1)^(+0.3)×12_(0)^(+4) mm)is welded by the combination of friction stir welding(FSW)and consumable inert gas welding(MIG),which was rolled bending from 20 mm thick wall plate to inner diameterΦ2102 mm,FSW butt welding of barrel body and MIG welding of a large number of accessories of the shell.But the inner diameter is deformed greatly and the deformation is irregular.Which caused the residual wall thickness can't meeting the design requirements of 12 mm after finish machining to inner diameter ofΦ2110 mm.It can’t meet the structural strength requirements if the thickness is too large or less than 12 mm.The control of wall thickness is very important to the safety of the whole system.Therefore,by analyzing the deformation law of FSW after welding,adjusting the welding thickness of one side,changing the welding sequence and optimizing the chemical assembly scheme can reduce the concave deformation of one side after welding from the maximum 10 mm to less than 2 mm;by analyzing the deformation law of accessories after MIG welding,optimizing the assembly and welding sequence,chemical assembly scheme and finishing process scheme,the qualified rate of wall thickness after barrel machining is increased from 23%to 100%.
作者
田国平
张松
梁志方
高艳芳
陈志远
高嘉爽
TIAN Guoping;ZHANG Song;LIANG Zhifang;GAO Yanfang;CHEN Zhiyuan;GAO Jiashuang(Shanghai Aerospace Equipments Manufacturer Co.,Ltd.,Shanghai 200245,China;Shanxi Aerospace Qinghua Equipment Co.,Ltd.,Changzhi 046012,China)
出处
《电焊机》
2022年第7期100-104,共5页
Electric Welding Machine
基金
国家重点研发计划(2019YFA0709004)。