期刊文献+

基于Bayesian直觉模糊粗糙集的数据分类方法 被引量:7

Data classification method based on Bayesian intuitionistic fuzzy rough sets
原文传递
导出
摘要 在直觉模糊集和粗糙集理论基础上,结合Bayesian概率和近似关系,提出了Bayesian直觉模糊粗糙集模型,并对其进行研究。首先,在粗糙集的基础上,定义了基于直觉模糊粗糙集上的Bayesian概率,结合直觉模糊近似关系和模糊矩阵,给出了直觉模糊等价关系,并讨论了其性质;其次,根据直觉模糊集和截集的特性,得到基于Bayesian直觉模糊粗糙集的等价类,并进一步给出了上、下近似的划分方法,求出正、负域和边界域并计算近似精度;最后,在UCI数据集上,分析验证该模型的有效性,该模型能较好地分类含有模糊信息的数据。 This paper proposed a Bayesian intuitionistic fuzzy rough set model based on the theory of intuitionistic fuzzy sets and rough sets, Bayesian probability and approximate relations is combined, and conducted research on it. Firstly, on the basis of rough sets, Bayesian probability based on intuitionistic fuzzy rough set is defined, combined with intuitionistic fuzzy approximation relation and fuzzy matrix, the intuitionistic fuzzy equivalence relation is given, and its properties are discussed. Secondly, according to the characteristics of intuitionistic fuzzy sets and cut sets, the equivalence class basis of Bayesian intuitionistic fuzzy rough sets is obtained, and the upper and lower approximation division method are further given, the positive, negative and boundary fields are calculated and the approximate accuracy is calculated. Finally, the effectiveness of the model is analyzed and verified, and the data with fuzzy information can be better classified on the UCI data sets.
作者 薛占熬 李永祥 姚守倩 荆萌萌 XUE Zhan-ao;LI Yong-xiang;YAO Shou-qian;JING Meng-meng(College of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,Henan,China;Engineering Lab of Intelligence Business&Internet of Things,Henan Province,Xinxiang 453007,Henan,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2022年第5期1-10,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(62076089,61772176) 河南省科技攻关项目(182102210078,212102210136)。
关键词 Bayesian粗糙集 直觉模糊集 直觉模糊等价关系 近似精度 数据分类 Bayesian rough set intuitionistic fuzzy set intuitionistic fuzzy equivalence relation approximate accuracy data classification
  • 相关文献

参考文献11

二级参考文献94

  • 1李立明,吕筠.关注循证公共卫生决策[J].中华流行病学杂志,2006,27(1):1-4. 被引量:23
  • 2Schapire R, Singer Y. goosTexter: A boosting-based system for text categorization[J]. Machine Learning, 2000,39 (2) : 135-168.
  • 3Trohidis K, Tsoumakas G, Kalliris G, et al. Multi-label classifi- cation of music into emotions[C]//Proceeding of 9th Interna- tional Conference on Music Information Retrieval (ISMIR). Philadelphia, PA, USA, 2008 : 325-330.
  • 4Elisseeff A, Weston J. A kernel method for multi-labelled classi- fication[C]//Advances in Neural Information Processing Sys- tems 14. Cambridge, MA: MIT Press, 2002 : 681-687.
  • 5Tsoumakas G, Katakis I. Multi-Label Classification: An Over- view[J]. International Journal of Data Warehousing and Mi- ning, 2007,3 (3) : 1-13.
  • 6Zhang Min-ling, Zhou Zhi-hua. A Review on Multi-Label Lear- ning Algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26 (8) : 1819-1837.
  • 7Pawlak Z. Rough Sets [J]. International Journal of Computer and Information Sciences, 1982,11 (5) : 341-356.
  • 8Dubois D,Prade H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990,17 : 191-208.
  • 9Hu Qing-hua, Zhang Lei, An Shuang, et al. On robust fuzzy rough set models[J]. IEEE Transactions on Fuzzy systems, 2012,20(4) :636-651.
  • 10McCallum A. Multi-label text classification with a mixture model trained by EM[C]//Proc of Working Notes of the AAAI' 99 Workshop on Text Learning. Menlo Park, CA: AAAI Press, 1999.

共引文献61

同被引文献83

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部