期刊文献+

Optimality of Solution with Numerical Investigation for Coronavirus Epidemic Model 被引量:2

下载PDF
导出
摘要 The novel coronavirus disease,coined as COVID-19,is a murderous and infectious disease initiated from Wuhan,China.This killer disease has taken a large number of lives around the world and its dynamics could not be controlled so far.In this article,the spatio-temporal compartmental epidemic model of the novel disease with advection and diffusion process is projected and analyzed.To counteract these types of diseases or restrict their spread,mankind depends upon mathematical modeling and medicine to reduce,alleviate,and anticipate the behavior of disease dynamics.The existence and uniqueness of the solution for the proposed system are investigated.Also,the solution to the considered system is made possible in a well-known functions space.For this purpose,a Banach space of function is chosen and the solutions are optimized in the closed and convex subset of the space.The essential explicit estimates for the solutions are investigated for the associated auxiliary data.The numerical solution and its analysis are the crux of this study.Moreover,the consistency,stability,and positivity are the indispensable and core properties of the compartmental models that a numerical design must possess.To this end,a nonstandard finite difference numerical scheme is developed to find the numerical solutions which preserve the structural properties of the continuous system.The M-matrix theory is applied to prove the positivity of the design.The results for the consistency and stability of the design are also presented in this study.The plausibility of the projected scheme is indicated by an appropriate example.Computer simulations are also exhibited to conclude the results.
出处 《Computers, Materials & Continua》 SCIE EI 2021年第5期1713-1728,共16页 计算机、材料和连续体(英文)
  • 相关文献

参考文献6

二级参考文献5

共引文献74

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部