摘要
离心式喷嘴具有轴向较大的旋转速度分量,在其诱导下会产生空气芯,使得喷嘴出口处产生空心锥液膜。空心锥液膜会发生一次破碎和二次雾化,流动行为较为复杂。采用流体体积函数转换成离散相模型(VOF-to-DPM)这种结合了流体体积法和欧拉—拉格朗日方法的多相流模型,并结合自适应网格细化方法,针对双切向孔离心式喷嘴雾化流场特性展开研究。分析了空心锥液膜的产生、发展到发生一次破碎和二次雾化的全过程。结果表明:基于VOF-to-DPM多相流模型模拟所得喷嘴雾化角与实验所测得雾化角基本吻合,验证了所提数值模型的可靠性;计算过程中自适应网格的存在可以更加准确地模拟液膜的形成;空心锥液膜从发展到发生一次破碎的过程中,随着质量流量的增加而更加稳定;液膜二次雾化所产生的液体颗粒总数随着质量流量的增加而减少,且颗粒粒径大小分布更加均匀。
The centrifugal nozzle has a large axial rotation velocity component,which induces an air core to produce a hollow conical liquid film at the nozzle outlet.The hollow conical liquid film will undergo the primary breakup and secondary atomization,and the flow behavior is complex.In this paper,a multiphase flow model named Volume of Fluid-to-Discrete Phase Model(VOF-to-DPM)is adopted and it combines the Volume of Fluid method and the Euler-Lagrange method.Combined with the adaptive mesh refinement method,the characteristics of atomization flow field of the centrifugal nozzle with double tangential holes are studied.The whole process from the generation,development to the primary breakup and secondary atomization of the hollow conical liquid film is analyzed.The results show that the atomization angle of the nozzle simulated based on the VOF-to-DPM multiphase flow model is basically consistent with the atomization angle measured by the experiment,which verifies the reliability of the numerical model in this paper.The existence of adaptive grid in the calculation process can simulate the formation of the liquid filmmore accurately.The hollow conical liquid film is more stable with the increase of mass flow during the process from development to primary breakup.The total number of liquid particles produced by the liquid film secondary atomization decreases with the increase of mass flow rate,and the particle size distribution is more uniform.
作者
徐文
高新妮
胡保林
杨建文
杨斌
王莹
XU Wen;GAO Xinni;HU Baolin;YANG Jianwen;YANG Bin;WANG Ying(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Xi'an Aerospace Propulsion Institute,Xi'an 710100,China)
出处
《火箭推进》
CAS
2022年第4期13-20,共8页
Journal of Rocket Propulsion
基金
上海市自然科学基金(21ZR1462000)。